首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Fire is an important ecological factor in the Cerrado (Brazilian savanna). However, comparative studies on the effect of high temperatures experienced during fires on seed germination of native and invasive grass species are few.

Aims: To assess germination responses to simulated fire temperatures by seeds of invasive and native Cerrado grasses.

Methods: Heat-shock treatments (50 °C, 70 °C, 90 °C, 110 °C, 130 °C or 150 °C) were applied to seeds of 10 species of native and invasive grasses. For each temperature, the seeds were heated in a dry-air flow for 2 or 5 min. This combination of temperatures and exposure times simulated the soil conditions during typical Cerrado fires.

Results: Temperature treatment was significantly related to germination, and the effect varied according to species. Heat shock did not increase germination in either the native or the invasive species. Exposure time was important for only two species, and four species showed a significant increase in mean germination time.

Conclusions: Species showed different tolerances to high temperatures. It was not possible to differentiate the native and invasive grasses only by their tolerance to high temperatures, suggesting that fire alone may not be an efficient management tool to control the invasive species studied here.  相似文献   

2.
1 We measured competition intensity (CI) between herbaceous vegetation and tree seedlings ( Quercus macrocarpa and Q. ellipsoidalis ) along an experimental moisture–light gradient. Contrasting theories were tested by comparing variation in competition intensity to changes in neighbour biomass and resource supply and demand.
2 CI based on survival was inversely correlated with net soil water supply (gross supply minus demand by herbaceous vegetation). CI was not positively correlated with either gross resource supply or neighbour biomass, contrary to predictions of Grime's triangular model for plant strategies.
3 Many of the inconsistencies and conflicting results that have characterized the recent literature on plant competition could be eliminated if changes in competition intensity along a resource gradient are compared with changes in net resource supply rather than changes in productivity or neighbour biomass.
4 Tree seedling success in savannas and grasslands may be strongly influenced by the intensity of competition from herbaceous vegetation. Factors that reduce soil water content are likely to increase competition intensity (and reduce seedling success) in these environments, while factors that increase soil water content will favour seedling success through decreased competition for water with herbaceous vegetation.  相似文献   

3.
4.
Due to frequent fire, low nutrient availability, and prolonged drought, tropical savanna is a stressful environment for the survival and growth of woody plant seedlings. To understand why forest species do not succeed in this environment while savanna species are able to persist, the effects of fire and woody cover on seedlings of these two functional groups were investigated in the Brazilian Cerrado. Seedlings were established in experimental plots under three densities of woody cover, in sites protected from fire and sites to be subjected to fire. There was a clear difference in the ability of savanna and forest species to survive fire. None of the three forest species were able to survive fire during the first two years of life, whereas eight of the nine savanna species were able to resprout following fire. The small seed size of the ninth savanna species, Miconia albicans, predisposed its seedlings to be sensitive to fire, because there was a strong positive correlation between seed size and survivorship. Savanna species were less dependent on woody cover than were forest species, which exhibited higher growth and survival under tree canopies than in open grassland. The low rates of establishment and survival of forest trees in savanna, combined with high sensitivity to fire, appear sufficient to prevent the expansion of forest into savanna under current fire regimes in the Cerrado.  相似文献   

5.
6.
Plant invasions can cause severe degradation of natural areas. The ability of an ecosystem to recover autogenically from degradation following weed control is in part determined by the type and magnitude of changes to both biotic and abiotic processes caused by the invasion and how these interact with structural and functional components of the ecosystem. Recently, a number of conceptual frameworks have been proposed to describe the dynamics of degradation and regeneration in degraded ecosystems. We assessed the utility of one of these frameworks in describing the degradation and restoration potential of Australia’s tropical savannas following exotic grass invasion. First, we identified easily measured structural characteristics of putative states. We found that a continuous cover of the exotic grasses Gamba grass (Andropogon gayanus Kunth.) and Perennial mission grass (Pennisetum polystachion (L.) Schult.) under an intact tree canopy was a common state with an understorey characterized by reduced species richness and abundance and a change in the relative contribution of functional groups. Further degradation led to a state where the canopy was severely reduced and the impacts on the understorey were more severe. In both states, the seed bank was substantially less degraded than the understorey vegetation. Guided by the framework, we combined our study with other studies to construct a conceptual model for degradation in exotic grass‐invaded savannas.  相似文献   

7.
Survival and life expectancy are key demographic determinants of population dynamics. Using data collected in a field experiment monitored over 14 years in montane grassland of the Ukhahlamba‐Drakensberg Park, South Africa, we determined the effects of components of fire regime and plant structure on the survival and life expectancy of the tree Protea roupelliae subsp. roupelliae (Proteaceae). The field experiment comprised six plots (0.2–0.5 ha in area) from which the survival and life expectancies of 1567 juveniles (non‐reproductives) and 329 adults (reproductives) were estimated in response to differences in fire frequency, biennial seasonal fire, flame height, juvenile height, adult height, basal area and canopy vigour. Juvenile survival and life expectancies were highest when fires were excluded for 8 years. However, a fire after 12 years of fire exclusion and another fire 2 years later eliminated all juveniles. Over the same 14‐year period of biennial fires, juvenile survival was 5%. Juvenile survival and life expectancy were higher after biennial, winter fires than after annual, winter fires. Flame height had no effect on juvenile survival and life expectancy. Both survival and life expectancy of juveniles increased as plants got older and grew taller. Adult survival was unaffected by fire frequency, flame height or tree size, but the survival of adults in response to fire seasonality was inconclusive. Adults with low canopy vigour (<25%) were negatively affected by fire. Juvenile survival and life expectancy are critical bottlenecks in the demography of P. roupelliae. This species is neither a reseeder nor a resprouter. It avoids lethal fire damage by being restricted to rocky habitats with low fire intensities. Biennial winter fires least threaten the survival and life expectancy of P. roupelliae and impact least on its role in the summer feeding and breeding of Gurney's sugarbird.  相似文献   

8.
Abstract. Grassland communities are increasingly recognized as disturbance‐dependent ecosystems, yet there are few replicated, multi‐site studies documenting vegetation responses to varying frequencies and types of grassland disturbance. Even so, land managers frequently manipulate disturbance regimes in an attempt to favour native grassland plants over exotic species. We conducted a factorial experiment testing three frequencies of clipping combined with litter accumulation, litter removal, and soil disturbance within the highly threatened California coastal prairie plant community. We monitored the response of native/exotic, grass/forb plant guilds once a year for four years. More frequent clipping reduced cover of exotic grasses and favoured exotic forbs, whereas native species were largely unaffected by clipping frequency. Litter accumulation, litter removal, and soil disturbance did not affect vegetation composition. Effects of litter accumulation may take longer than our experiment allowed, and soil disturbance due to our treatments was not sufficiently strong to show consistent effects relative to mammalian soil disturbance. Treatment response of some plant guilds differed among sites, highlighting the importance of replicating experiments at several sites before recommending conservation management practices.  相似文献   

9.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

10.
Global fire regimes are shifting due to climate and land use changes. Understanding the responses of belowground communities to fire is key to predicting changes in the ecosystem processes they regulate. We conducted a comprehensive meta‐analysis of 1634 observations from 131 empirical studies to investigate the effect of fire on soil microorganisms and mesofauna. Fire had a strong negative effect on soil biota biomass, abundance, richness, evenness, and diversity. Fire reduced microorganism biomass and abundance by up to 96%. Bacteria were more resistant to fire than fungi. Fire reduced nematode abundance by 88% but had no significant effect on soil arthropods. Fire reduced richness, evenness and diversity of soil microorganisms and mesofauna by up to 99%. We found little evidence of temporal trends towards recovery within 10 years post‐disturbance suggesting little resilience of the soil community to fire. Interactions between biome, fire type, and depth explained few of these negative trends. Future research at the intersection of fire ecology and soil biology should aim to integrate soil community structure with the ecosystem processes they mediate under changing global fire regimes.  相似文献   

11.
We investigated general effects of ecological restoration treatments on soil function in frequent‐fire forests of the western United States using a systematic review methodology. We searched numerous publication databases for original research papers and used well‐defined criteria developed a priori to select papers for review. We used meta‐analysis and qualitative summaries to compare reported responses of macronutrients, nitrogen cycling, and soil respiration among tree thinning (thin), prescribed fire (burn), and thinning plus prescribed fire treatments (composite). Results of meta‐analysis showed that mean differences in macronutrients were consistently higher in composite treatments (standardized using controls) when compared to thin‐only and burn‐only treatments. Mean responses related to nitrogen cycling showed similar patterns, with significant increases detected in composite treatments for all nitrogen cycling variables (mineralization, ammonification, and nitrification) and insignificant responses for the majority of the burn‐only and thin‐only treatments. Mean difference in response for soil respiration following composite treatments showed increases as compared to the controls, and no significant differences were detected in response to burn‐ and thin‐only treatments. While soil function, nutrient cycling, and soil respiration differed among treatments, the most significant effects were observed for nitrogen and carbon responses, net mineralization and nitrification, ammonium availability, and soil respiration rate, which experienced the greatest increase following treatments that were both thinned and burned.  相似文献   

12.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

13.
Human activities are causing unprecedented disturbances in terrestrial ecosystems across the globe. To reverse soil deterioration in drylands, a promising tool is the ex situ cultivation of biological soil crusts, topsoil geobiological assemblages that provide key ecosystem services. One approach is to transplant biocrusts cultivated in greenhouse nursery facilities into degraded sites to accelerate recovery. Lichen‐ and moss‐dominated biocrusts have been successfully grown using a common, sandy soil. We compared the use of a common, sandy soil versus native soils as a substrate for the cultivation of cyanobacteria‐dominated biocrusts. In greenhouse experiments, we inoculated natural biocrusts collected from three Southwestern USA dryland sites on to either a common, sandy soil or on their respective native soils. The common substrate resulted in a moderate enhancement of growth yield relative to native soils. While changes in bacterial phyla composition remained low in all cases, the use of a common substrate introduced larger shifts in cyanobacterial community composition than did using native soils. The shift increase attributable to the common, sandy soil was not catastrophic—and typical cyanobacteria of field biocrusts remained dominant—unless textural differences between the common substrate and native soils were marked. Because collecting native soils adds a significant effort to growing cyanobacterial biocrusts in greenhouses for restoration purposes, the use of a common, sandy substrate may be considered by land managers as a standard practice. But we recommend to regularly monitor the composition of the grown biomass.  相似文献   

14.
Anthropogenic disturbances are increasing worldwide, causing wildlife habitat loss, alteration, and fragmentation. In Canada, the decommissioning of linear anthropogenic structures is identified as a promising tool to restore the habitat of threatened populations of boreal caribou (Rangifer tarandus caribou) by reducing food availability for alternate prey and decreasing encounter probabilities with predators. In this study, we monitored the use of 40 km of decommissioned forest roads by caribou, gray wolves (Canis lupus), black bears (Ursus americanus), and moose (Alces americanus) 1–3 years after reclamation, using 232 motion-activated camera traps. We compared four additive treatments (meaning that each successive treatment included the treatment prior): closing the road to human access, decompacting its soil, planting black spruce (Picea mariana) trees, and adding enriched soil. We assessed the influence of treatments, use by other large mammals, and characteristics of the surrounding environment on road use by the four species. Caribou used the planted treatment (which also included closing and decompacting) more than the closed-only (reference) treatment, but treatments did not influence the use of decommissioned roads by bears and moose. We could not assess the use of treated roads by wolves because of low sample size. Road use by caribou declined with local moose density, but increased with local bear density. Caribou were observed more frequently on roads surrounded by regenerating and mature coniferous stands; caribou also preferentially used roads surrounded by wetlands. Our results suggest that the treatment combining road closure, soil decompaction, and tree planting could be beneficial to caribou, highlighting the relevance of including active restoration efforts in caribou conservation programs. We recommend that such a treatment be added to road decommissioning protocols for the conservation of caribou, alongside broad-scale habitat protection.  相似文献   

15.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

16.
17.
In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine‐dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above‐treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully “leap‐frogging” over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early‐stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal and establishment may result in future communities with very different specific composition.  相似文献   

18.
Although ecologists have documented the effects of nitrogen enrichment on productivity, diversity and species composition, we know little about the relative importance of the mechanisms driving these effects. We propose that distinct aspects of environmental change associated with N enrichment (resource limitation, asymmetric competition, and interactions with soil microbes) drive different aspects of plant response. We test this in greenhouse mesocosms, experimentally manipulating each factor across three ecosystems: tallgrass prairie, alpine tundra and desert grassland. We found that resource limitation controlled productivity responses to N enrichment in all systems. Asymmetric competition was responsible for diversity declines in two systems. Plant community composition was impacted by both asymmetric competition and altered soil microbes, with some contributions from resource limitation. Results suggest there may be generality in the mechanisms of plant community change with N enrichment. Understanding these links can help us better predict N response across a wide range of ecosystems.  相似文献   

19.
Keystone species restoration, or the restoration of species whose effect on an ecosystem is much greater than their abundance would suggest, is a central justification for many wildlife reintroduction projects globally. Following restoration, plains bison (Bison bison L.) have been identified as a keystone species in the tallgrass prairie ecoregion, but we know of no research to document similar effects in the mixed‐grass prairie where restoration efforts are ongoing. This study addresses whether Northern Great Plains (NGP) mixed‐grass prairie plant communities exhibit traits consistent with four central keystone effects documented for bison in the tallgrass prairie. We collected species composition, diversity, abundance, bare ground cover, and plant height data in three treatments: where livestock (Bos taurus L.) continuously grazed, livestock were removed for 10 years, and bison have been introduced and resident for 10 years. We observed mixed support for bison acting as keystone species in this system. Supporting the keystone role of bison, we observed higher species richness and compositional heterogeneity (β‐diversity) in the bison treatment than either the livestock retention or livestock removal treatments. However, we observed comparable forb, bare ground, and plant height heterogeneity between bison‐restored sites and sites where livestock were retained, contradicting reported keystone effects in other systems. Our results suggest that after 10 years of being restored, bison partially fulfill their role as a keystone species in the mixed‐grass prairie, and we encourage continued long‐term data collection to evaluate their influence in the NGP.  相似文献   

20.
为研究退牧还草对土壤纤毛虫群落特征的影响、退牧还草后土壤环境变化以及如何利用原生动物纤毛虫群落特征来评价退还效果的可行性,于2015年5月至2016年3月在甘肃省甘南藏族自治州玛曲县选取3个不同恢复年限的草地样点和1个未经过退牧还草对照样点,采用"非淹没培养皿法"、活体观察法和培养直接计数法对土壤纤毛虫的物种数和密度进行测定,同时测定了土壤温度、pH值、含水量、土壤孔隙度、速效钾、速效氮、速效磷、全氮、全钾、全磷和有机质含量,并分析了在生态逐渐恢复条件下,土壤纤毛虫群落特征与土壤环境因子间的相关性。研究共鉴定到纤毛虫95种,隶属9纲15目21科28属。研究发现,退牧还草样地与未退牧还草样地的土壤纤毛虫的物种分布存在明显差异:退牧还草后的3个样点间的物种相似性减小,群落组成复杂化,纤毛虫丰度、丰富度指数、均匀度指数和物种多样性指数增高。相关性分析结果表明,退牧还草后,对纤毛虫群落结构稳定性影响最主要的是土壤有机质、含水量和土壤全氮、全磷和全钾的含量,不同恢复年限样点的土壤纤毛虫群落组成差异较大。土壤纤毛虫群落对退牧还草生态恢复过程中土壤环境条件的变化有较好的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号