首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The diversity–stability hypothesis in ecology asserts that biodiversity begets stability of ecological systems. This hypothesis has been supported by field studies on primary producers in grasslands, in which the interaction between species is mostly competition. As to ecosystems with multitrophic predatory interaction, however, no definite consensus has been arrived at for the relation between trophic diversity and ecosystem stability. The stability index suitable to ecosystems with predatory interaction is given by MacArthurs idea of stability and its formulation by Rutledge et al. More suitable indices of stability (relative conditional entropy) are proposed in this study for the comparison of different ecosystems, and the validity of the diversity–stability hypothesis for food webs (networks of predation) with many trophic compartments in natural aquatic ecosystems is examined. Results reveal that an increase in the biomass diversity of trophic compartments causes an increase in the whole systemic stability of food webs in aquatic ecosystems. Hence, evidence of the whole systemic validity of the diversity–stability hypothesis for natural aquatic ecosystems with ubiquitous multitrophic predatory interaction was obtained for the first time.  相似文献   

2.
SUMMARY 1. Research has shown that fish influence the structure and processes of aquatic ecosystems, but replicated studies at the ecosystem level are rare as are those involving wetlands. Some wetlands of the Prairie Pothole Region (PPR) of North America support fish communities dominated by fathead minnows ( Pimephales promelas ) while others are fishless, providing an opportunity to assess the influence of these fish on wetland ecosystems. Additionally, many wetlands have previously been drained and subsequently restored, but the success of these efforts is poorly known and restoration may be impeded by the presence of fish.
2. We assessed the effects of fathead minnows and drainage by studying 20 semipermanent, prairie wetlands in Minnesota from 1996 to 1999. We used a 2 × 2 factorial design to examine the effects of presence and absence of minnows and drainage history (restored/never drained) on the abundance of aquatic invertebrates and amphibians, as well as on the concentrations of chlorophyll a , total phosphorus, total nitrogen and turbidity in the water column.
3. Results showed that fathead minnows are an important determinant of many biotic and abiotic characteristics of wetlands in the eastern PPR. Wetlands with fathead minnows had fewer aquatic insects, large- and small-bodied cladocerans, calanoid copepods, ostracods and larval tiger salamanders, as well as a higher abundance of corixids and greater turbidity and chlorophyll a . A higher concentration of phosphorus in restored basins was the only consistent effect of past management.
4. Fathead minnows usually dominate fish communities in eastern PPR wetlands where fish are present, and can have several strong ecosystem effects. While abiotic variables are important determinants of ecosystem structure in prairie wetlands, they can be strongly influenced by biotic factors.  相似文献   

3.
1. A substantial fraction of the freshwater available in neotropical forests is impounded within the rosettes of bromeliads that form aquatic islands in a terrestrial matrix. The ecosystem functioning of bromeliads is known to be influenced by the composition of the contained community but it is not clear whether bromeliad food webs remain functionally similar against a background of variation in the understorey environment. 2. We considered a broad range of environmental conditions, including incident light and incoming litter, and quantified the distribution of a very wide range of freshwater organisms (from viruses to macroinvertebrates) to determine the factors that influence the functional structure of bromeliad food webs in samples taken from 171 tank‐bromeliads. 3. We observed a gradient of detritus‐based to algal‐based food webs from the understorey to the overstorey. Algae, rotifers and collector and predatory invertebrates dominated bromeliad food webs in exposed areas, whereas filter‐feeding insects had their highest densities in shaded forest areas. Viruses, bacteria and fungi showed no clear density patterns. Detritus decomposition is mainly due to microbial activity in understorey bromeliads where filter feeders are the main consumers of microbial and particulate organic matter (POM). Algal biomass may exceed bacterial biomass in sun‐exposed bromeliads where amounts of detritus were lower but functional diversity was highest. 4. Our results provide evidence that tank‐bromeliads, which grow in a broad range of ecological conditions, promote aquatic food web diversity in neotropical forests. Moreover, although bromeliad ecosystems have been categorised as detritus‐based systems in the literature, we show that algal production can support a non‐detrital food web in these systems.  相似文献   

4.
It has long been recognized that communities and their ecosystems are structured at several, nested spatial scales. But identifying the appropriate scale(s) to collect, analyse and interpret data to answer specific questions about ecosystems has been a vexing problem for ecologists. We collected observations of the benthic invertebrate community and its environment in 10 primarily agricultural tributary streams of the Thames River in southwestern Ontario, Canada. Within each stream we sampled two reaches, in each reach we sampled three riffles, and in each riffle we took three kick samples of invertebrates and characterized the substrate environment. We also characterized the habitat at each of the 20 reaches (10 streams × 2 reaches/stream). Most of the variability in the stream invertebrate community structure (as described with taxonomic richness and the biotic index of tolerance, as well as by the Bray-Curtis distance of the community composition from the mean at a spatial scale) was at larger spatial scales of among streams and between riffles. Much of the substrate and habitat variation was also at the larger spatial scales, as were correlations between the biota and the environment of the benthic invertebrate community. We concluded that for the purposes of bioassessment, characterization of one reach per stream is sufficient, at least in this context, for describing a stream and evaluating its health. Handling editor: R. Norris  相似文献   

5.
Mattson  Niklas S. 《Hydrobiologia》1998,380(1-3):195-207
Feeding preferences in two tropical omnivorous fishes, Oreochromis shiranus and Barbus paludinosus were similar when offered an array of planktonic food in aquaria. The two species were stocked into earthen ponds at different rates. Abiotic and biotic variables were measured over a period of 120 days. Data analysis by multiple linear regression did not reveal significant negative coefficients between adjacent trophic levels, which would have indicated top-down effects. It is suggested that the results are due to uncoupling between trophic levels in tropical freshwater ecosystems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The strength of interactions is crucial to the stability of ecological networks. However, the patterns of interaction strengths in mathematical models of ecosystems have not yet been based upon independent observations of balanced material fluxes. Here we analyse two Antarctic ecosystems for which the interaction strengths are obtained: (1) directly, from independently measured material fluxes, (2) for the complete ecosystem and (3) with a close match between species and ‘trophic groups’. We analyse the role of recycling, predation and competition and find that ecosystem stability can be estimated by the strengths of the shortest positive and negative predator‐prey feedbacks in the network. We show the generality of our explanation with another 21 observed food webs, comparing random‐type parameterisations of interaction strengths with empirical ones. Our results show how functional relationships dominate over average‐network topology. They make clear that the classic complexity‐instability paradox is essentially an artificial interaction‐strength result.  相似文献   

7.
8.
The forests of the Luquillo Experimental Forest Long-Term Ecological Research site are subject to low-intensity, widespread disturbance that establishes levels of background mortality that contrast with periodic catastrophic mortality resulting from hurricanes and landslides. Although catastrophic mortality is more dramatic, background mortality is still more important in determining population turnover. However, catastrophic mortality may still be an important agent in determining ecosystem structure. Catastrophic disturbances affect forest function in many ways besides mortality, some of which are only apparent in the context of long-term studies. Since most ecosystems are subject to some form of catastrophic disturbance, general principles can be derived from comparative studies of disturbance in different systems.  相似文献   

9.
Growing attention to novel and designed ecosystems, and the confusion that follows from the overlap of these distinct ecosystem approaches, risks a loss of focus on ecological values at the core of restoration ecology. Novel ecosystems originate in ecosystems that are transformed beyond which the practical efforts of conventional restoration are feasible. They are also self‐sustaining in the sense that they take time to form, and do not typically receive regular management. In this respect, they arise differently than designed ecosystems, which are assembled with specific goals in mind and are often heavily managed. Designed (or engineered) ecosystems comprise a variety of ecological approaches including reclamation (return a degraded ecosystem to productive capacity), green infrastructure, and agroecological systems. There are three elements that distinguish novel and designed ecosystems. Designed ecosystems typically require intensive intervention to create them, and ongoing management to sustain them; novel ecosystems do not. Second, the human intentions behind designed and novel ecosystems are usually different. Designed ecosystems exist in the service of human interests, including specific services (e.g. filtration, cooling, nature appreciation), aesthetics, and shifting value commitments toward green infrastructure; novel ecosystems arise typically through inadvertent human activity. Third, designed and novel ecosystems have different developmental pathways. Historical ecosystems are the starting point for restored, hybrid, and novel ecosystems; designed ecosystems are intentionally created. Designed ecosystems stand apart as providing a new origin for ecosystems of the future, including those that become novel ecosystems.  相似文献   

10.
11.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

12.
13.
As a rapidly accelerating expression of global change, plastics now occur extensively in freshwater ecosystems, yet there is barely any evidence of their transfer through food webs. Following previous observations that plastics occur widely in their prey, we used a field study of free‐living Eurasian dippers (Cinclus cinclus), to test the hypotheses that (1) plastics are transferred from prey to predators in rivers, (2) plastics contained in prey are transferred by adults to altricial offspring during provisioning and (3) plastic concentrations in faecal and regurgitated pellets from dippers increase with urbanization. Plastic occurred in 50% of regurgitates (n = 74) and 45% of faecal samples (n = 92) collected non‐invasively from adult and nestling dippers at 15 sites across South Wales (UK). Over 95% of particles were fibres, and concentrations in samples increased with urban land cover. Fourier transform infrared spectroscopy identified multiple polymers, including polyester, polypropylene, polyvinyl chloride and vinyl chloride copolymers. Although characterized by uncertainty, steady‐state models using energetic data along with plastic concentration in prey and excreta suggest that around 200 plastic particles are ingested daily by dippers, but also excreted at rates that suggest transitory throughput. As some of the first evidence revealing that plastic is now being transferred through freshwater food webs, and between adult passerines and their offspring, these data emphasize the need to appraise the potential ecotoxicological consequences of increasing plastic pollution.  相似文献   

14.
15.
One important aspect of climate change is the increase in average temperature, which will not only have direct physiological effects on all species but also indirectly modifies abundances, interaction strengths, food-web topologies, community stability and functioning. In this theme issue, we highlight a novel pathway through which warming indirectly affects ecological communities: by changing their size structure (i.e. the body-size distributions). Warming can shift these distributions towards dominance of small- over large-bodied species. The conceptual, theoretical and empirical research described in this issue, in sum, suggests that effects of temperature may be dominated by changes in size structure, with relatively weak direct effects. For example, temperature effects via size structure have implications for top-down and bottom-up control in ecosystems and may ultimately yield novel communities. Moreover, scaling up effects of temperature and body size from physiology to the levels of populations, communities and ecosystems may provide a crucially important mechanistic approach for forecasting future consequences of global warming.  相似文献   

16.
The biological and ecological integrity of marine ecosystems in the Pearl River Estuary (PRE) has been compromised due to overfishing and water pollution. Fishing moratorium and artificial reef construction have been implemented in Wanshan and Miaowan for resource protection and restoration. Therefore, food web structure and trophic pathways of Wanshan, Miaowan, and Wailingding in different temporal and spatial situation will be determined using the Ecopath model, as well as the keystone species affecting these ecosystems, which can provide a basis for fishery management. The results showed that the energy transfer efficiency of IV and V trophic levels (TL) was higher than that of II and III‐TL before and after fishing moratorium, and the energy transfer efficiency of artificial reefs II and III‐TL was only slightly higher than that of nonartificial reefs in Wanshan. In addition, the mean values of ecosystem property indicators (consumption, respiration flow, total system throughput, and total biomass) after the fishing moratorium were significantly higher than those before the fishing moratorium. The average value of the ecosystem attribute indicators (consumption, respiration flow, total system throughput, and total biomass) of artificial reefs is lower than those of nonartificial reef areas, which may be related to the differences in community composition between artificial reefs and non‐artificial reefs. Finally, Nemipterus japonicus and Gastrophysus spadiceus are keystone species that distinguish the Wanshan and Miaowan artificial reefs from other areas. Overall, the fishing moratorium has a positive effect on the short‐term restoration of fishery resources, mainly restoring short‐life cycle organisms. However, the construction of artificial reefs will be more conducive to the persistence of ecosystem restoration. In addition, reasonable proliferation, release and fishing of N. japonicus and G. spadiceus will be beneficial to the sustainable utilization of fishery resources.  相似文献   

17.
Secondary succession is well‐understood, to the point of being predictable for plant communities, but the successional changes in plant‐herbivore interactions remains poorly explored. This is particularly true for tropical forests despite the increasing importance of early successional stages in tropical landscapes. Deriving expectations from successional theory, we examine properties of plant‐herbivore interaction networks while accounting for host phylogenetic structure along a succession chronosequence in montane rainforest in Papua New Guinea. We present one of the most comprehensive successional investigations of interaction networks, equating to > 40 person years of field sampling, and one of the few focused on montane tropical forests. We use a series of nine 0.2 ha forest plots across young secondary, mature secondary and primary montane forest, sampled almost completely for woody plants and larval leaf chewers (Lepidoptera) using forest felling. These networks comprised of 12 357 plant‐herbivore interactions and were analysed using quantitative network metrics, a phylogenetically controlled host‐use index and a qualitative network beta diversity measure. Network structural changes were low and specialisation metrics surprisingly similar throughout succession, despite high network beta diversity. Herbivore abundance was greatest in the earliest stages, and hosts here had more species‐rich herbivore assemblages, presumably reflecting higher palatability due to lower defensive investment. All herbivore communities were highly specialised, using a phylogenetically narrow set of hosts, while host phylogenetic diversity itself decreased throughout the chronosequence. Relatively high phylogenetic diversity, and thus high diversity of plant defenses, in early succession forest may result in herbivores feeding on fewer hosts than expected. Successional theory, derived primarily from temperate systems, is limited in predicting tropical host‐herbivore interactions. All succession stages harbour diverse and unique interaction networks, which together with largely similar network structures and consistent host use patterns, suggests general rules of assembly may apply to these systems.  相似文献   

18.
  1. Although the amino acid composition of fishes and some marine invertebrates varies among taxa and systems, similar information is lacking for freshwater invertebrates. The objectives were to characterise and compare the amino acid composition among different aquatic species, dietary habits, and environmental conditions.
  2. Benthic macroinvertebrates from different functional feeding groups (FFG), bulk zooplankton, biofilm, and fishes representing 12 families (21 genera or species) were collected from temperate lakes in eastern Canada during the summers of 2013 and 2014. Fifteen protein-bound amino acids, including thiols, were measured in whole invertebrates, biofilm, or fish muscle. We hypothesised that the amino acid composition will differ among species and systems.
  3. Multiple discriminant analyses revealed significant differences in the amino acid composition among species—based on varying percentages of cysteine (as cysteic acid) and histidine—and among FFG/trophic designations—based on histidine and lysine—where the primary consumers were more variable than the predators.
  4. Overall, the results suggest that patterns were based on phylogenetics, biological characteristics, and the FFG/trophic designations of biota.
  5. The within-taxon variability in composition was also related to differences among lakes. Characteristics of their environment, including lake pH and the food web structure (abundance and composition of taxa), probably influenced their dietary habits and amino acid composition of diet.
  6. These results expand the currently limited knowledge of the biochemical composition of freshwater biota and provide impetus for further studies on nutritional values in predator-prey relationships, trophic guilds, and the biomagnification of protein-bound contaminants through food webs.
  相似文献   

19.
Root development in simple and complex tropical successional ecosystems   总被引:8,自引:0,他引:8  
Fine and coarse root mass and fine root surface area were studied during 5 yr following the felling and burning of a tropical forest near Turrialba, Costa Rica. Five experimental ecosystems were established: 1) natural successional vegetation, 2) successional vegetation enriched by seed applications, 3) imitation of succession (built by substituting investigator-selected species for natural colonizers), 4) monocultures (two maize crops followed by cassava andCordia alliodora), and 5) a bare plot. Fine roots grew rapidly in all treatments during the first 15 wk, at which time there were 75 gm−2 in the monoculture and 140 gm−2 in the enriched and natural successions. Subsequent growth was slower, and fine-root mass decreased during the first dry season. After 5 yr coarse root mass to a depth of 85 cm was about 800, 1370, and 1530 gm−2 in the succession, enriched succession and imitation of succession, respectively. At the final harvest, the 3.5 yr-oldC. alliodora plantation had 1000 g m−2 of coarse-root biomass. Roots <1 mm in diameter were concentrated in the upper 5 cm of soil and accounted for most fine-root surface area. Total fine-root surface area was greatest in the enriched successional vegetation and usually lowest in the monoculture.  相似文献   

20.
Removal of apex predators can drive ecological regime shifts owing to compensatory positive and negative population level responses by organisms at lower trophic levels. Despite evidence that apex predators can influence ecosystems though multiple ecological pathways, most studies investigating apex predators’ effects on ecosystems have considered just one pathway in isolation. Here, we provide evidence that lethal control of an apex predator, the dingo Canis dingo, drives shifts in the structure of Australia's tropical‐savannah ecosystems. We compared mammal assemblages and understorey structure at seven paired‐sites. Each site comprised an area where people poisoned dingoes and an area without dingo control. The effects of dingo control on mammals scaled with body size. Where dingoes were poisoned, we found greater activity of herbivorous macropods and feral cats, a mesopredator, but sparser understorey vegetation and lower abundances of native rodents. Our study suggests that ecological cascades arising from apex predators’ suppressive effects on herbivores and mesopredators occur simultaneously. Concordant effects of dingo removal across tropical‐savannah, forest and desert biomes suggest that dingoes once exerted ubiquitous top–down effects across Australia and provides support for calls that top–down forcing should be considered a fundamental process governing ecosystem structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号