首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
QuestionHow conservation and forest type affect macrofungal compositional diversity is not well understood. Even less is known about macrofungal associations with plants, soils, and geoclimatic conditions.LocationSouthern edge of boreal forest distribution in China, named as Huzhong Nature Reserve.MethodsWe surveyed a total of 72 plots for recording macrofungi, plants, and topography in 2015 and measured soil organic carbon, nitrogen, and bulk density. Effects of conservation and forest types on macrofungi and plants were compared, and their associations were decoupled by structural equation modeling (SEM) and redundancy ordination (RDA).ResultsConservation and forest type largely shaped macrofungal diversity. Most of the macrofungal traits declined with the conservation intensities or peaked at the middle conservation region. Similarly, 91% of macrofungal traits declined or peaked in the middle succession stage of birch‐larch forests. Forest conservation resulted in the observation of sparse, larch‐dominant, larger tree forests. Moreover, the soil outside the Reserve had more water, higher fertility, and lower bulk density, showing miscellaneous wood forest preference. There is a complex association between conservation site characteristics, soils, plants, and macrofungi. Variation partitioning showed that soil N was the top‐one factor explaining the macrofungal variations (10%). As shown in SEM coefficients, conservation effect to macrofungi (1.1–1.2, p < .05) was like those from soils (1.2–1.6, p < .05), but much larger than the effect from plants (0.01–0.14, p > .10). For all tested macrofungal traits, 89%–97% of their variations were from soils, and 5%–21% were from conservation measures, while plants compensated 1%–10% of these effects. Our survey found a total of 207 macrofungal species, and 65 of them are new updates in this Reserve, indicating data shortage for the macrofungi list here.ConclusionOur findings provide new data for the joint conservation of macrofungi and plant communities, highlighting the crucial importance of soil matrix for macrofungal conservation in boreal forests.  相似文献   

2.
Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large‐scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human‐modified landscapes.  相似文献   

3.
Tropical forests contain an important proportion of the carbon stored in terrestrial vegetation, but estimated aboveground biomass (AGB) in tropical forests varies two‐fold, with little consensus on the relative importance of climate, soil and forest structure in explaining spatial patterns. Here, we present analyses from a plot network designed to examine differences among contrasting forest habitats (terra firme, seasonally flooded, and white‐sand forests) that span the gradient of climate and soil conditions of the Amazon basin. We installed 0.5‐ha plots in 74 sites representing the three lowland forest habitats in both Loreto, Peru and French Guiana, and we integrated data describing climate, soil physical and chemical characteristics and stand variables, including local measures of wood specific gravity (WSG). We use a hierarchical model to separate the contributions of stand variables from climate and soil variables in explaining spatial variation in AGB. AGB differed among both habitats and regions, varying from 78 Mg ha?1 in white‐sand forest in Peru to 605 Mg ha?1 in terra firme clay forest of French Guiana. Stand variables including tree size and basal area, and to a lesser extent WSG, were strong predictors of spatial variation in AGB. In contrast, soil and climate variables explained little overall variation in AGB, though they did co‐vary to a limited extent with stand parameters that explained AGB. Our results suggest that positive feedbacks in forest structure and turnover control AGB in Amazonian forests, with richer soils (Peruvian terra firme and all seasonally flooded habitats) supporting smaller trees with lower wood density and moderate soils (French Guianan terra firme) supporting many larger trees with high wood density. The weak direct relationships we observed between soil and climate variables and AGB suggest that the most appropriate approaches to landscape scale modeling of AGB in the Amazon would be based on remote sensing methods to map stand structure.  相似文献   

4.
The macrofungal communities of Irish native tree species (ash and oak) and exotic tree species (Scots pine and Sitka spruce) forests were examined through the collection of sporocarps over 3 yr. Sampling of 27 plots revealed 186 species of macrofungi, including 10 species new to Ireland. The species richness of non-native Sitka spruce and Scots pine forests was similar to that of native oak forests. However, specific communities of macrofungi existed in each of the forest types as confirmed by non-metric multidimensional scaling and multi-response permutation procedure. Indicator species analysis was used to identify macrofungi which are indicative of the four forest types. The oak community lacked certain species/genera known to be distinctive of oak woods in Britain, possibly due to low inoculum availability as a result of historic removal of Ireland’s oak forests. Our results indicate that, while being similar to native forests in species richness, non-native forests of Sitka spruce and Scots pine in Ireland harbour many fungal species which are not typical of native forests, particularly members of the genus Cortinarius.  相似文献   

5.
The most influential environmental drivers of macrofungal species composition were studied in managed, even-aged, mixed forests of Őrség National Park, Hungary. Functional groups of macrofungi were analyzed separately by non-metric multidimensional scaling and redundancy analysis exploring their relations to tree species composition, stand structure, soil/litter conditions, microclimate, landscape, and management history. There was some evidence that macrofungi are related to drivers that are relatively easy to measure. Wood-inhabiting fungal species composition is driven primarily by the species composition of living trees, while substratum properties and microclimate play minor roles. The terricolous saprotrophic community was determined principally by a litter pH gradient involving tree species composition and soil/litter properties. Microclimate had no concordant effect. No obvious underlying gradients were detected on ectomycorrhizal fungal species composition; however, tree size and litter pH had significant effects. For each group, no clear responses to landscape or management history were detected.  相似文献   

6.
Macrofungal species richness generally increases with forest continuity as does the richness of so-called ancient forest plant species (AFS). Based on this assumption, we examined the ability of AFS to indicate macrofungal diversity in six study areas covering a range of elevations and environments in the Czech Republic. In total, we used data from 106 sampling plots (2,500 m2 each) distributed over six types of forest stands reflecting different intensities and temporal stages of forest management. Species composition of vascular plants and macrofungi was recorded by a single inventory and regular 2-year monitoring, respectively. In total, we found 71 AFS and 1,413 macrofungal species, of which 150 were red-listed macrofungal species. We documented that AFS show potential for being used in the prediction of macrofungi species richness, including endangered species, at the local scale (α-diversity). Additionally, we found significant differences in macrofungal species richness depending on study area and type of forest management, which did not, however, derogate the effect of AFS. Spatial congruence between species composition of AFS and macrofungi communities (β-diversity) increased with forest age and decreased with intensity of forest management. If we consider the simplicity of monitoring AFS in comparison to regular monitoring of macrofungi, we found a widely usable tool for estimating macrofungal diversity in all dominant types of managed forest in central Europe. However, we should be aware of the limited ability of AFS to capture macrofungal diversity across a broader spatial context (γ-diversity), especially in areas with a low diversity of AFS.  相似文献   

7.
The diversity of easy-to-study organisms (e.g. vascular plants) is often used as a proxy for the diversity of other organisms whose investigation needs more effort, time and specialist knowledge. Some previous studies have found positive relationships between plant and macrofungal diversity and thus support this approach, while others question this practice. Our aim was to explore the possibility of using plant diversity as surrogate for macrofungal diversity in the forests of the Pannonian ecoregion. A total of 19 permanent plots in north-east Hungary were sampled for vascular plants and macrofungi. The effect on macrofungal abundance and diversity, as well as degradation level, of plant evenness and richness was tested using generalized linear models. Species richness of macrofungi assemblages proved to be independent of the diversity and naturalness of vascular plant communities; however, there was congruence in the composition of the two communities. In contrast to diversity, macrofungi abundance was significantly negatively correlated to plant species richness. There was a hump-backed relationship between the abundance of terricolous macrofungi and the degradation level estimated on the basis of the occurrence of vascular plants, although degradation did not influence the abundance of lignicolous macrofungi. Our results question the reliability of decisions on nature conservation actions based on a few groups of easy-to-observe organisms, and underline the necessity of studying as wide a range of taxonomic groups as possible.  相似文献   

8.
Ant communities are extremely diverse and provide a wide variety of ecological functions in tropical forests. Here, we investigated the abiotic factors driving ant composition turnover across an elevational gradient at Mont Itoupé, French Guiana. Mont Itoupé is an isolated mountain whose top is covered by cloud forests, a biogeographical rarity that is likely to be threatened according to climate change scenarios in the region. We examined the influence of six soil, climatic, and LiDAR‐derived vegetation structural variables on leaf litter ant assembly (267 species) across nine 0.12‐ha plots disposed at three elevations (ca. 400, 600, and 800m asl). We tested (a) whether species cooccurring within a same plot or a same elevation were more similar in terms of taxonomic, functional, and phylogenetic composition, than species from different plots/elevations, and (b) which environmental variables significantly explained compositional turnover among plots. We found that the distribution of species and traits of ant communities along the elevational gradient was significantly explained by a turnover of environmental conditions, particularly in soil phosphorus and sand content, canopy height, and mean annual relative humidity of soil. Our results shed light on the role exerted by environmental filtering in shaping ant community assembly in tropical forests. Identifying the environmental determinants of ant species distribution along tropical elevational gradients could help predicting the future impacts of global warming on biodiversity organization in vulnerable environments such as cloud forests.  相似文献   

9.
Abstract The biodiversity of macrofungi in mature and young regrowth Tasmanian wet forests is described at the species level and at the community level. The macrofungal communities studied were much more species‐rich than their vascular plant counterparts, with the total number of macrofungal taxa outnumbering vascular plants by four to one. This ratio applied in both mature and young regrowth forest sites. Some 242 taxa of macrofungi were recorded, of which 132 were identified to species level, the remainder to species groups or higher taxa. Distinct communities could be discerned from multivariate analysis (ordination and classification) of vascular plant and macrofungal data from the mature and regrowth sites. The two vascular plant communities had different fire histories, and this difference is also assumed to account for the separation of the macrofungal communities of the two forest types. There was generally a high level of congruence between the vascular plant and the macrofungal communities. However, one young regrowth site, which was relatively close to the mature sites in the ordination space for the analysis of vascular plants, was distant from the mature forest sites for the analysis of macrofungi. Another regrowth site, which had experienced wildfire rather than silvicultural regeneration, clustered with mature sites for some analyses of the macrofungal assemblage. Variation in the macrofungal communities was correlated with a different set of the measured environmental variables than was variation in the vascular plant communities. Mature and young regrowth forests were found to have distinctly different macrofungal floras, with approximately 40% of the taxa in each forest type being restricted to that type of site. Suitable indicator taxa (restricted or preferential to particular forest types) for use in further studies are suggested.  相似文献   

10.
The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.  相似文献   

11.
本文基于2019年对新疆针叶林和草原地区5个样地的15个样方的研究,借助高通量测序技术对样方土壤大型真菌群落组成进行分析,快速挖掘大型真菌资源;利用冗余分析和典范对应分析研究新疆大型真菌多样性与不同生境型及大型真菌发生的其他因子的关系。结果表明,新疆针叶林和草原大型真菌主要涉及丝膜菌科Cortinariaceae、丝盖伞科Inocybaceae、珊瑚菌科Clavariaceae和蜡伞菌科Hygrophoraceae等,其中口蘑属Tricholoma、黏滑菇属Hebeloma、乳牛肝属Suillus、红菇属Russula、丝膜菌属Cortinarius、蜡伞属Hygrophorus和丝盖伞属Inocybe为优势属。  相似文献   

12.
Aim Epiphytic bryophyte communities of tropical forests show a gradient in species composition from the base to the top of the host trees, indicating a strong role of niche assembly. This pattern, however, has never been tested at a regional scale. The aim of this study was to test whether niche assembly, rather than dispersal limitation, predominantly drives species composition of bryophyte communities across large spatial scales. Location Three lowland forests in the Guianas: one near Saul, French Guiana; and two near Mabura Hill, Guyana. Methods Communities of epiphytic bryophytes were sampled from six different height zones of several trees in three lowland forests. We analysed the composition of these communities using detrended correspondence analysis in order to find the best explanatory variable for the variation in community composition. A multi‐response permutation procedure was used to test the significance of grouping communities by height zone. We conducted an indicator species analysis to classify species as specialists or generalists and then tested, through weighted averaging, if specialists would indeed maintain their preferred height zone across the Guianas. Results Community composition was explained mainly by height zone. The similarity among communities inhabiting the same height zone of trees, across a distance of up to 640 km, was higher than the similarity among communities established along the vertical gradient of a single standing tree (30–50 m). More than half (57%) of the species had a preferred height zone, and the preference was consistent: species occupied roughly the same height zone on host trees in the different localities. The three local communities investigated were found to belong to the same regional species pool. Main conclusions Throughout the Guianas, epiphytic bryophyte communities are drawn from the same regional species pool, and their composition is shaped by micro‐environmental conditions. The predominance of niche assembly over dispersal assembly rules is consistently found at both local and regional scales.  相似文献   

13.
Research to date on Amazonian swamps has reinforced the impression that tree communities there are dominated by a small, morphologically specialized subset of the regional flora capable of surviving physiologically challenging conditions. In this paper, using data from a large‐scale tree inventory in upland, floodplain, and mixed palm swamp forests in Amazonian Ecuador, we report that tree communities growing on well‐drained and saturated soils are more similar than previously appreciated. While our data support the traditional view of Amazonian swamp forests as low‐diversity tree communities dominated by palms, they also reveal four patterns that have not been well documented in the literature to date: 1) tree communities in these swamp forests are dominated by a phylogenetically diverse oligarchy of 30 frequent and common species; 2) swamp specialists account for < 10% of species and a minority of stems; 3) most tree species recorded in swamps (> 80%) also occur in adjacent well‐drained forest types; and 4) many tree species present in swamps are common in well‐drained forests (e.g. upland oligarchs account for 34.1% of all swamp stems). These observations imply that, as in the temperate zone, the composition and structure of Amazonian swamp vegetation are determined by a combination of local‐scale environmental filters (e.g. plant survival in permanently saturated soils) and landscape‐scale patterns and processes (e.g. the composition and structure of tree communities in adjacent non‐swamp habitats, the dispersal of propagules from those habitats to swamps). We conclude with suggestions for further research to quantify the relative contributions of these factors in structuring tree communities in Amazonian swamps.  相似文献   

14.
Conversion of diverse native forests to tree monocultures remains an ongoing, worldwide threat to biodiversity. Although the effects of forest conversion have been studied in a wide range of taxonomic groups, the effects on macrofungal communities remain poorly understood. We sampled macrofungal fruiting bodies in the National Forest of São Francisco de Paula in Southern Brazil over 12 months in four different forest habitats: native Araucaria angustifolia forest, A. angustifolia plantation, Pinus taeda or P. elliottii plantation, and Eucalyptus saligna plantation. The distribution of macrofungal species in different functional groups varied among habitats: the macrofungal species composition of the A. angustifolia plantation was more similar to that of the native forest, while the exotic Pinus or Eucalyptus plantations were less similar to the native forest. The conversion of native forest to exotic tree plantations reduced the number of macrofungal decomposer species, probably due to changes in substrate availability and quality. We conclude that fungal diversity and ecosystem functionality require the preservation of native, mature forests and suggest a shift of Brazilian forestry guidelines to encourage the plantations of native species instead of exotics.  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) play a key role in the maintenance of the balance of terrestrial ecosystems, but little is known about the biogeography of these fungi, especially on tropical islands. This study aims to compare AMF community structure along a transect crossing a fluvial-marine island and relate these communities with soil and vegetation parameters to shed light on the forces driving AMF community structure on a local scale. We tested the hypothesis that the composition of AMF communities changes across the island, even within short distances among sites, in response to differences in edaphic characteristics and vegetation physiognomies. We sampled roots and soils in five different natural and degraded habitats: preserved mangrove forest (MF), degraded mangrove forest (MD), natural Restinga forest (RF), and two regeneration Restinga forests (RR1 and RR2) on Ilha da Restinga, northeastern Brazil. We determined the mycorrhizal colonization rate and AMF community structure based on morphological spore identification. The island soils were sandy with pH varying from acid to neutral; higher levels of organic matter were registered in RF and lower in MF; other chemical and physical soil attributes differed along the habitat types on the island. In total, 22 AMF species were identified, without any difference in species richness. However, the diversity and composition of AMF communities, spore abundance per families, and mycorrhizal colonization were statistically different among the habitats. The composition of AMF communities was strongly related to soil characteristics, especially the sum of exchangeable bases. Our results indicate that the different habitat types have diverse AMF communities even within short distances among habitats. In conclusion, islands with high spatial heterogeneity in soil parameters and diverse vegetation are potential refuges for the diversity conservation of AM fungi.  相似文献   

16.
Fungi are essential components of all terrestrial ecosystems. Despite the crucial ecological role of soil fungi in grasslands, knowledge about fungal community diversity and structure in Mediterranean meadow habitats is still fragmentary. We analyzed macrofungal communities in three geographically distinct Mediterranean montane calcareous grasslands and surrounding forests, by means of fruit body surveys. We investigated a number of biotic and abiotic factors influencing the studied fungal communities, including plant species composition. Out of 6365 fruit bodies, a total of 268 species belonging to 84 genera were found. In general, there was a significant correlation between plant species richness and fungal richness. Variation in vegetation and plant community structure accounted for approximately 20% of variance in fungal community structure. Tree and shrub vegetation played a dominant role in shaping the analyzed fungal communities, both in meadows and surrounding forests, with particular influence on ectomycorrhizal, litter, and lignicolous saprotrophic fungi. Fungal biodiversity in the studied meadows was increased by the presence of tree and shrub species from the adjacent forests, but was reduced by the increasing vegetation cover.  相似文献   

17.
The macrofungal species richness and community assemblages in Italian native woodlands of oaks and Carpinus betulus and non-native woodlands of Pinus spp., Cupressus sempervirens and Eucalyptus camaldulensis were examined through the collection of basidiomata and ascomata over 1 year. The sampling in Collestrada (Umbria) and Pizzo Manolfo (Sicily) forests revealed 216 species of macrofungi. The results indicate differences in macromycete richness and diversity patterns between the two sites. The dominant tree species of the two sites were different; thus, the Collestrada forests had higher mycorrhizal species richness, while the Pizzo Manolfo forest had a higher relative number of saprotroph macrofungi. The macrofungal community of Quercus frainetto woodland from Collestrada forest was richer and more diverse than the other site's woodland types. This study highlighted that both Collestrada and Pizzo Manolfo forests provide a habitat for diverse macrofungal species, not in the least ectomycorrhizal species.  相似文献   

18.
Crabtree CD  Keller HW  Ely JS 《Mycologia》2010,102(6):1229-1239
Fungi and vascular plant interactions are necessary components of natural community establishment, productivity and degradation. While many fungal species serve as decomposers of organic matter, others have evolved mutualistic or parasitic relationships with vascular plants. This research focused on characterizing associations among macrofungi, vascular plant communities and soils. Ha Ha Tonka State Park is in central Missouri and has a varying landscape with numerous natural community types that provide diverse habitats and microhabitats that are ideally suited to the investigation of fungal, floral and soil associations. Five communities sampled within the park included glades, open woodlands, flatwoods, closed-canopy forests and karst sinks. Permanent 0.01 ha. plots were surveyed in the 2006 and 2007 growing seasons. Surveys of plots and entire communities yielded 249 fungal taxa and approximately 265 floral taxa. Soils were analyzed to help define specific edaphic components of each community and used to associate soil attributes with plant and fungal communities. Forest communities contained the most ectomycorrhizal (ECM) fungi species. Karst sinks and glades had higher soil pH and phosphorus and fewer ectomycorrhizal fungi. Statistical analyses included non-metric multidimensional scaling, multiresponse permutation procedure and indicator species analysis. Indicator species were identified for flatwood, forest and karst communities, but results were inconclusive for glades and open woodlands.  相似文献   

19.
Plant habitat associations are well documented in Bornean lowland tropical forests, but few studies contrast the prevalence of associations across sites. We examined habitat associations and community composition of Dipterocarpaceae trees in two contrasting Bornean lowland mixed dipterocarp forests separated by approximately 100 km: Andulau (uniform topography, lower altitudinal range, sandy soils) and Belalong (highly dissected topography, higher altitudinal range, clay‐rich soils). Dipterocarpaceae trees ≥ 1 cm diameter at breast height (dbh) were censused in 20‐m wide belt transects established along topographic gradients at each site. Dipterocarp density, evenness, species richness, and diversity were significantly higher at Andulau than Belalong. Significant site associations (with either Andulau or Belalong) were detected for 19 (52%) of the 37 dipterocarp species tested. Dipterocarpaceae community composition at Belalong correlated with soil nutrient concentrations as well as measures of vegetation and topographic structure, but community composition at Andulau correlated with fewer habitat variables. Within each site, dipterocarp density, species richness, and diversity were consistently higher on ridges than in slopes and valleys. Significant within‐site associations to topographic habitats were less common at Andulau (10% of species tested) than at Belalong (15%). We conclude that edaphic and other environmental factors influence dipterocarp community composition at a local scale, and are more important drivers of community structure in the more variable environment at Belalong. Species richness and diversity of dipterocarps on small plots, however, were higher at Andulau, suggesting that factors other than environmental heterogeneity contribute to contrasts in dipterocarp tree species richness at small scales.  相似文献   

20.
The Neotropics are among the least explored regions from a mycological perspective. A few recent molecular studies in South America have shown high fungal diversity as well as numerous groups of mostly undescribed taxa. Through soil metabarcoding analysis we compared richness and species composition among macrofungal communities, belonging to Agaricales, Russulales, Boletales and Phallomycetidae groups, in three elevational forests types in the subtropical Yungas of Northwestern Argentina (Piedmont forest; Montane forest, Montane cloud forest). The aims of this study were to assess richness of taxonomic and functional groups along the elevation gradient and to assess the relationships between environmental variables and species composition in the studied fungal communities. The results have shown rich Agaricomycetes communities, diversely structured among forests habitats. The elevation gradient differentially affected the richness and distribution of Agaricales, Russulales, Boletales and Phallomycetidae. Based on fungal trophic modes and guilds, the gradient also affected the ectomycorrhizal taxa distribution. When considering the basidiomata growth forms (agaricoid, boletoid, gasteroid, etc.), only the secotioid type showed significant elevational differences. Additional analyses indicated that saprotrophic nutritional mode was dominant along the entire gradient, being partially replaced by biotrophic modes at higher elevations. Fungal communities in the Montane cloud forests are most dissimilar when compared with communities at the Piedmont forest and Montane forest, which is consistent with the different biogeographic origins of these forests. DNA metabarcoding sequence analysis provided detailed information on the diversity and taxonomic and functional composition of macrofungal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号