首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
了解不同森林群落类型的物种和谱系水平的α和β多样性, 有助于指导森林经营和生物多样性保护。本研究比较了浙江省内不同地点主要森林类型(包括常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林和针阔叶混交林)的物种α多样性和谱系α多样性, 以及物种β多样性和谱系β多样性。研究表明, 该地区主要森林类型的物种和谱系α多样性均存在较大差异, 但控制了空间和地形因子的作用后, 差异几乎全部消失; 森林类型内部及相互间的物种和谱系β多样性均存在显著差异, 同种森林类型内部的物种和谱系β多样性分别小于不同森林类型之间的物种和谱系β多样性, 且在控制了空间和地形因子的作用后, 以上差异仍然显著。本研究表明影响亚热带主要森林群落类型物种和谱系水平的α和β多样性的因素存在差异: α多样性可能主要受到空间和地形因子等的影响, 而β多样性则可能受到森林类型的重要影响。  相似文献   

2.
Environmental filtering and spatial structuring are important ecological processes for the generation and maintenance of biodiversity. However, the relative importance of these ecological drivers for multiple facets of diversity is still poorly understood in highland streams. Here, we examined the responses of three facets of stream macroinvertebrate alpha diversity to local environmental, landscape‐climate and spatial factors in a near‐pristine highland riverine ecosystem. Taxonomic (species richness, Shannon diversity, and evenness), functional (functional richness, evenness, divergence, and Rao's Quadratic entropy), and a proxy of phylogenetic alpha diversity (taxonomic distinctness and variation in taxonomic distinctness) were calculated for macroinvertebrate assemblages in 55 stream sites. Then Pearson correlation coefficient was used to explore congruence of indices within and across the three diversity facets. Finally, multiple linear regression models and variation partitioning were employed to identify the relative importance of different ecological drivers of biodiversity. We found most correlations between the diversity indices within the same facet, and between functional richness and species richness were relatively strong. The two phylogenetic diversity indices were quite independent from taxonomic diversity but correlated with functional diversity indices to some extent. Taxonomic and functional diversity were more strongly determined by environmental variables, while phylogenetic diversity was better explained by spatial factors. In terms of environmental variables, habitat‐scale variables describing habitat complexity and water physical features played the primary role in determining the diversity patterns of all three facets, whereas landscape factors appeared less influential. Our findings indicated that both environmental and spatial factors are important ecological drivers for biodiversity patterns of macroinvertebrates in Tibetan streams, although their relative importance was contingent on different facets of diversity. Such findings verified the complementary roles of taxonomic, functional and phylogenetic diversity, and highlighted the importance of comprehensively considering multiple ecological drivers for different facets of diversity in biodiversity assessment.  相似文献   

3.
Biodiversity encompasses multiple facets, among which taxonomic, functional and phylogenetic aspects are the most often considered. Understanding how those diversity facets are distributed and what are their determinants has become a central concern in the current context of biodiversity crisis, but such multi‐faceted measures over large geographical areas are still pending. Here, we measured the congruence between the biogeographical patterns of freshwater fish morphological, ecological and phylogenetic diversity across Europe and identified the natural and anthropogenic drivers shaping those patterns. Based on freshwater fish occurrence records in 290 European river catchments, we computed richness and evenness for morphological, ecological and phylogenetic diversity using standardized effect sizes for each diversity index. We then used linear models including climatic, geo‐morphological, biotic and human‐related factors to determine the key drivers shaping freshwater fish biodiversity patterns across Europe. We found a weak spatial congruence between facets of diversity. Patterns of diversity were mainly driven by elevation range, climatic seasonality and species richness while other factors played a minor role. Finally, we found that non‐native species introductions significantly affected diversity patterns and influenced the effects of some environmental drivers. Morphological, ecological and phylogenetic diversity constitute complementary facets of fish diversity rather than surrogates, testifying that they deserve to be considered altogether to properly assess biodiversity. Although the same environmental and anthropogenic factors overall explained those diversity facets, their relative influence varied. In the current context of global change, non‐native species introductions may also lead to important reshuffling of assemblages resulting in profound changes of diversity patterns.  相似文献   

4.
Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.  相似文献   

5.
6.
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests.  相似文献   

7.
8.
Wood-inhabiting fungi and saproxylic beetles are threatened by habitat degradation. Our understanding of the importance of macroclimate and local factors determining their taxonomic diversity has increased, but determinants of functional and phylogenetic diversity are poorly understood. We investigated assemblages of wood-inhabiting fungi and saproxylic beetles along a 1000 m elevational gradient of a temperate low mountain range. We (i) tested the relative importance of macroclimate (i.e. elevation) and local variables (microclimate, i.e. canopy closure, amount and diversity of dead wood) in determining observed and rarefied diversities and (ii) explored whether determinants of observed functional and phylogenetic diversities match those of taxonomic diversity. For both taxa, the determinants of observed phylogenetic and functional diversities largely matched those of taxonomic diversity. The diversity of wood-inhabiting fungi was predominantly determined by local variables, whereas that of saproxylic beetles was determined by both local variables and elevation. Taxonomic and phylogenetic diversities of saproxylic beetles decreased with increasing elevation, but standardized functional richness and entropy of both groups increased with increasing elevation. Diversities of wood-inhabiting fungi increased with canopy closure, while diversities of saproxylic beetles decreased with increasing canopy closure. Microclimate and dead-wood amount and diversity affected the observed and rarefied diversity of both saproxylic taxa, which justifies conservation actions that focus on attributes of dead wood and canopy cover. The contrasting responses of fungi and beetles highlight the need for amounts of diverse dead wood in the various microclimates to preserve functional and phylogenetic diversities of saproxylic organisms.  相似文献   

9.
Forest fragmentation and defaunation are considered the main drivers of biodiversity loss, yet the synergistic effects of landscape changes and biotic interactions on assemblage structure have been poorly investigated. Here, we use an extensive dataset of 283 assemblages and 105 species of small mammals to understand how defaunation of medium and large mammals and forest fragmentation change the community composition and diversity of rodents and marsupials in tropical forests of South America. We used structured equation models to investigate the relationship between small mammal species, functional and phylogenetic diversity with forest size, forest cover and the occurrence of medium and large mammals. The best‐fit model showed that defaunation reduced functional diversity, and that species diversity of small mammals increased with forest patch size. Forest cover did not affect functional and phylogenetic diversity. Our results indicate that occurrence of medium and large sized mammals (probably acting as predators, or competitors of small mammals) and forest patch size help to retain species and functional diversity in small mammal communities. Further, the number of species in a small mammal community was critical to the maintenance of phylogenetic diversity, and may have a pronounced influence on the ecological functions played by small mammals. Identifying how phylogenetic and functional diversity change in function of human pressures allows us to better understand the contribution of extant lineages to ecosystem functioning in tropical forests.  相似文献   

10.

Aim

Deforestation of the Atlantic Forest of eastern Paraguay has been recent but extensive, resulting in a fragmented landscape highly influenced by forest edges. We examined edge effects on multiple dimensions of small mammalian diversity.

Location

Forest fragments of eastern Paraguayan Atlantic Forest.

Methods

We trapped small mammal species at different distances from the forest edge (DTE) in reserves and estimated multiple dimensions of diversity per site. Similarity analysis identified species clusters that best described the patterns of diversity across reserves. Multivariate ordination and linear mixed models were used to determine the influence of DTE on various dimensions of small mammal diversity.

Results

There was an increase in richness and abundance along a DTE gradient, and remnants with higher edge:area ratios showed higher richness and abundance, independent of remnant size. Species at edges were generalists, open-habitat species or exotic species (spillover effect). We found higher phylogenetic diversity and functional richness and divergence towards forest edges. Spillover of non-forest and invasive species best explained richness, generalist forest species best explained total abundance, abundance of Hylaeamys megacephalus best explained diversity and evenness metrics and the presence of Marmosa paraguayana best explained various phylogenetic diversity models. None of the models that included megafauna or social factors were shown to be important in explaining patterns as a function of DTE.

Main Conclusions

We found strong support for a spillover effect and mixed support for complementary resource use and enhanced habitat resources associated with ecotones. Generalists characterized edge assemblages but not all generalists were equivalent. Edges showed more phylogenetically and functionally distinct assemblages than the interior of remnants. There was a conservation of functional diversity; however, open-habitat species, habitat generalists and exotic species boosted diversity near forest edges. Mechanisms governing diversity along forest edges are complex; disentangling those mechanisms necessitates the use of multiple dimensions of diversity.  相似文献   

11.
  1. Studies on ecological communities often address patterns of species distribution and abundance, but few consider uncertainty in counts of both species and individuals when computing diversity measures.
  2. We evaluated the extent to which imperfect detection may influence patterns of taxonomic, functional, and phylogenetic diversity in ecological communities.
  3. We estimated the true abundance of fruit‐feeding butterflies sampled in canopy and understory strata in a subtropical forest. We compared the diversity values calculated by observed and estimated abundance data through the hidden diversity framework. This framework evaluates the deviation of observed diversity when compared with diversities derived from estimated true abundances and whether such deviation represents a bias or a noise in the observed diversity pattern.
  4. The hidden diversity values differed between strata for all diversity measures, except for functional richness. The taxonomic measure was the only one where we observed an inversion of the most diverse stratum when imperfect detection was included. Regarding phylogenetic and functional measures, the strata showed distinct responses to imperfect detection, despite the tendency to overestimate observed diversity. While the understory showed noise for the phylogenetic measure, since the observed pattern was maintained, the canopy had biased diversity for the functional metric. This bias occurred since no significant differences were found between strata for observed diversity, but rather for estimated diversity, with the canopy being more clustered.
  5. We demonstrate that ignore imperfect detection may lead to unrealistic estimates of diversity and hence to erroneous interpretations of patterns and processes that structure biological communities. For fruit‐feeding butterflies, according to their phylogenetic position or functional traits, the undetected individuals triggered different responses in the relationship of the diversity measures to the environmental factor. This highlights the importance to evaluate and include the uncertainty in species detectability before calculating biodiversity measures to describe communities.
  相似文献   

12.
Although it is generally recognized that global biodiversity is declining, few studies have examined long‐term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5‐year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.  相似文献   

13.
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βreplβrich分别表现出单峰格局和“U”形格局, 而草本植物βreplβrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。  相似文献   

14.
Relationships among taxonomic, functional, and phylogenetic dimensions of biodiversity provide insight about the relative contributions of ecological and evolutionary processes in structuring local assemblages. We used data for rodent species distributions from an extensive tropical elevational gradient to 1) describe elevational gradients for each of three dimensions of biodiversity, 2) evaluate the sufficiency of species richness as a surrogate for other dimensions, and 3) quantify the relative support for mechanisms that increase or decrease phylogenetic or functional dispersion. Taxonomic biodiversity was quantified by species richness, as well as by richness, evenness, diversity, dominance, and rarity at generic and familial levels. Morphological and categorical traits were used to estimate functional biodiversity, and an ultrametric mammalian supertree was used as the basis for estimating phylogenetic biodiversity. Elevational gradients of each dimension of biodiversity were strong, with significant linear and non‐linear components based on orthogonal polynomial regression. Empirical linear and non‐linear regression components were consistently different than those expected based on species richness for generic, familial, and phylogenetic biodiversity, but not for functional biodiversity. Nevertheless, the congruence of dimensions of biodiversity based on correlation analyses indicated that any one dimension is a useful surrogate for the other dimensions for rodents at Manu. Given variation in species richness, assemblages from lowland rainforests comprised more biodiversity than expected, whereas assemblages from cloud and elfin forests represented less biodiversity than expected. Warm temperatures, vertical complexity of the vegetation, and high productivity likely facilitate niche differentiation in rainforests, whereas cricetid rodents are competitively superior to other clades in the less structurally complex, less productive, and colder, high elevation habitats.  相似文献   

15.
Geographic patterns of biodiversity result from broad-scale biogeographic and present-day ecological processes. The aim of this study was to investigate the relative importance of biogeographic history and ecology driving patterns of diversity in modern primate communities in Madagascar. I collected data on endemic lemur species co-occurrence from range maps and survey literature for 100 communities in protected areas. I quantified and compared taxonomic, phylogenetic, and functional dimensions of intra- and intersite diversity. I tested environmental and geographic predictors of diversity and endemism. I calculated deforestation rates within protected areas between the years 2000 and 2014, and tested if diversity is related to forest cover and loss. I found the phylogenetic structure of lemur communities could be explained primarily by remotely sensed plant productivity, supporting the hypothesis that there was ecological differentiation among ecoregions, while functional-trait disparity was not strongly related to environment. Taxonomic and phylogenetic diversity also increased with increasing topographic heterogeneity. Beta diversity was explained by both differences in ecology among localities and potential river barriers. Approximately 3000 km2 were deforested in protected areas since the year 2000, threatening the most diverse communities (up to 31%/park). The strong positive association of plant productivity and topographic heterogeneity with lemur diversity indicates that high productivity, rugged landscapes support greater diversity. Both ecology and river barriers influenced lemur community ecology and biogeography. These results underscore the need for focused conservation efforts to slow the loss of irreplaceable evolutionary and ecological diversity.  相似文献   

16.
Landscape structure is known to critically affect biodiversity. However, although the multi-facetted character of biodiversity is widely recognized, few studies have linked landscape spatial pattern and history simultaneously to multiple facets (taxonomic, functional, and phylogenetic) and spatial components (α, β, and γ) of plant diversity. We set out to reveal whether landscape parameters have specific effects on the separate diversity facets and components of plant diversity at a patch scale on coastal dune landscapes of Central Italy. For each landscape patch, we computed a set of patch-based metrics relying on multi-temporal land-cover maps. Based on a database of plant community plots, on functional traits from field measurements and on a dated phylogenetic tree, we calculated taxonomic (TD), functional (FD), and phylogenetic diversity (PD) within each patch at α, β, and γ level. Diversity measures were then related to the landscape metrics via linear mixed-effect models. Landscape pattern and transformations affected TD only moderately in coastal dune ecosystems. We found much stronger and contrasted effects on FD and PD. FD increased in patches surrounded by human-dominated habitats; PD was higher in fragmented patches, particularly in the Mediterranean macchia. Moreover, landscape pattern affected differently the single communities, the turnover among communities and the pool of species within the patch (α, β, and γ components). Our results call for the combined inclusion of FD and PD and their partitions into ecological analyses, being TD too crude to capture the comprehensive and contrasted response of plant diversity to landscape spatial pattern.  相似文献   

17.
The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.  相似文献   

18.

Aim

Our aim is to document the dimensions of current squamate reptile biodiversity in the Americas by integrating taxonomic, phylogenetic and functional data, and assessing how this may vary across phylogenetic scales. We also explore the potential underlying mechanisms that may be responsible for the observed geographical diversity patterns.

Location

The Americas.

Time period

Present.

Major taxa

Squamate reptiles.

Methods

We used published data on the distribution, phylogeny, and body size of squamate reptiles to document the current dimensions of their alpha diversity in the Americas. We overlapped species ranges to estimate taxonomic diversity (TD) and calculated phylogenetic diversity (PD) using mean pairwise phylogenetic distance (MPD), speciation rate (DivRate) and Faith's phylogenetic index (PD). We estimated functional diversity (FD) as trait dispersion in the multivariate space using body size and leg development data. We implemented a deconstructive macroecological approach to understand how spatial mismatches between the three facets of diversity vary across phylogenetic scales, and the potential eco-evolutionary mechanisms driving these patterns across space.

Results

We found a strong latitudinal gradient of TD with a large accumulation in tropical regions. PD and FD patterns were largely similar likely due to the high phylogenetic signal in the traits used, and higher values tended to be concentrated in harsh and/or heterogeneous environments. We found differences between major clades within Squamata that display contrasting geographical patterns. Several regions across the continent shared the same spatial mismatches between dimensions across clades, suggesting that similar eco-evolutionary processes are shaping these regional reptile assemblages. However, we also found evidence that non-mutually exclusive processes can operate differently across clades.

Main conclusions

The deconstructive approach implemented here is based on a solid macroecological framework. We can extend this to other taxonomic groups to establish whether there are particularities about how different eco-evolutionary mechanisms shape biodiversity facets in a spatially explicit context.  相似文献   

19.
There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high‐altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β‐diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High‐altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β‐diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β‐diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter‐ and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies.  相似文献   

20.
Biodiversity extinction thresholds are abrupt declines in biological diversity that occur with habitat loss, associated with a decline in habitat connectivity. Matrix quality should influence the location of thresholds along habitat loss gradients through its effects on connectivity; however these relationships have seldom been explored empirically. Using field data from 23 independent 1254 ha landscapes in the Brazilian Atlantic Forest, we evaluated how tropical avian biodiversity responds to native forest loss within habitat patches embedded either in homogeneous pasture matrix context (with a high proportion of cattle pastures), and heterogeneous coffee matrix context (with high abundance of sun coffee plantations). We considered taxonomic, functional, and phylogenetic diversity, and tested if matrix type and choice of diversity metric influenced the location of biodiversity thresholds along the forest cover gradient. We found that matrix type postponed the abrupt loss of taxonomic diversity, from a threshold of 35% of forest cover in homogeneous pasture matrix to 19% in heterogeneous coffee matrix. Phylogenetic diversity responded similarly, with thresholds at 30 and 24% in homogeneous‐pasture and heterogeneous‐coffee matrices, respectively, but no relationship with forest cover was detected when corrected for richness correlation. Despite the absence of a threshold for functional diversity in either matrix types, a strong decline below 20% of habitat amount was detected. Finally, below 20% native habitat loss, all diversity indices demonstrated abrupt declines, indicating that even higher‐quality matrices cannot postpone diversity loss below this critical threshold. These results highlight that taxonomic diversity is a more sensitive index of biodiversity loss in fragmented landscapes, which may be used as a benchmark to prevent subsequent functional and phylogenetic losses. Furthermore, increasing matrix quality appears an efficient conservation strategy to maintain higher biodiversity levels in fragmented landscapes over a larger range of habitat loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号