首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observational studies frequently are conducted to compare long-term effects of treatments. Without randomization, patients receiving one treatment are not guaranteed to be prognostically comparable to those receiving another treatment. Furthermore, the response of interest may be right-censored because of incomplete follow-up. Statistical methods that do not account for censoring and confounding may lead to biased estimates. This article presents a method for estimating treatment effects in nonrandomized studies with right-censored responses. We review the assumptions required to estimate average causal effects and derive an estimator for comparing two treatments by applying inverse weights to the complete cases. The weights are determined according to the estimated probability of receiving treatment conditional on covariates and the estimated treatment-specific censoring distribution. By utilizing martingale representations, the estimator is shown to be asymptotically normal and an estimator for the asymptotic variance is derived. Simulation results are presented to evaluate the properties of the estimator. These methods are applied to an observational data set of acute coronary syndrome patients from Duke University Medical Center to estimate the effect of a treatment strategy on the mean 5-year medical cost.  相似文献   

2.
Zexi Cai  Tony Sit 《Biometrics》2020,76(4):1201-1215
Quantile regression is a flexible and effective tool for modeling survival data and its relationship with important covariates, which often vary over time. Informative right censoring of data from the prevalent cohort within the population often results in length-biased observations. We propose an estimating equation-based approach to obtain consistent estimators of the regression coefficients of interest based on length-biased observations with time-dependent covariates. In addition, inspired by Zeng and Lin 2008, we also develop a more numerically stable procedure for variance estimation. Large sample properties including consistency and asymptotic normality of the proposed estimator are established. Numerical studies presented demonstrate convincing performance of the proposed estimator under various settings. The application of the proposed method is demonstrated using the Oscar dataset.  相似文献   

3.
Targeted minimum loss based estimation (TMLE) provides a template for the construction of semiparametric locally efficient double robust substitution estimators of the target parameter of the data generating distribution in a semiparametric censored data or causal inference model (van der Laan and Rubin (2006), van der Laan (2008), van der Laan and Rose (2011)). In this article we demonstrate how to construct a TMLE that also satisfies the property that it is at least as efficient as a user supplied asymptotically linear estimator. In particular it is shown that this type of TMLE can incorporate empirical efficiency maximization as in Rubin and van der Laan (2008), Tan (2008, 2010), Rotnitzky et al. (2012), and retain double robustness. For the sake of illustration we focus on estimation of the additive average causal effect of a point treatment on an outcome, adjusting for baseline covariates.  相似文献   

4.
We are interested in the estimation of average treatment effects based on right-censored data of an observational study. We focus on causal inference of differences between t-year absolute event risks in a situation with competing risks. We derive doubly robust estimation equations and implement estimators for the nuisance parameters based on working regression models for the outcome, censoring, and treatment distribution conditional on auxiliary baseline covariates. We use the functional delta method to show that these estimators are regular asymptotically linear estimators and estimate their variances based on estimates of their influence functions. In empirical studies, we assess the robustness of the estimators and the coverage of confidence intervals. The methods are further illustrated using data from a Danish registry study.  相似文献   

5.
Jiang H  Fine JP  Chappell R 《Biometrics》2005,61(2):567-575
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Because mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left-truncated and right-censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. First, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed-form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.  相似文献   

6.
In this article we construct and study estimators of the causal effect of a time-dependent treatment on survival in longitudinal studies. We employ a particular marginal structural model (MSM), proposed by Robins (2000), and follow a general methodology for constructing estimating functions in censored data models. The inverse probability of treatment weighted (IPTW) estimator of Robins et al. (2000) is used as an initial estimator and forms the basis for an improved, one-step estimator that is consistent and asymptotically linear when the treatment mechanism is consistently estimated. We extend these methods to handle informative censoring. The proposed methodology is employed to estimate the causal effect of exercise on mortality in a longitudinal study of seniors in Sonoma County. A simulation study demonstrates the bias of naive estimators in the presence of time-dependent confounders and also shows the efficiency gain of the IPTW estimator, even in the absence such confounding. The efficiency gain of the improved, one-step estimator is demonstrated through simulation.  相似文献   

7.

Summary

Omission of relevant covariates can lead to bias when estimating treatment or exposure effects from survival data in both randomized controlled trials and observational studies. This paper presents a general approach to assessing bias when covariates are omitted from the Cox model. The proposed method is applicable to both randomized and non‐randomized studies. We distinguish between the effects of three possible sources of bias: omission of a balanced covariate, data censoring and unmeasured confounding. Asymptotic formulae for determining the bias are derived from the large sample properties of the maximum likelihood estimator. A simulation study is used to demonstrate the validity of the bias formulae and to characterize the influence of the different sources of bias. It is shown that the bias converges to fixed limits as the effect of the omitted covariate increases, irrespective of the degree of confounding. The bias formulae are used as the basis for developing a new method of sensitivity analysis to assess the impact of omitted covariates on estimates of treatment or exposure effects. In simulation studies, the proposed method gave unbiased treatment estimates and confidence intervals with good coverage when the true sensitivity parameters were known. We describe application of the method to a randomized controlled trial and a non‐randomized study.  相似文献   

8.
In many clinical trials and evaluations using medical care administrative databases it is of interest to estimate not only the survival time of a given treatment modality but also the total associated cost. The most widely used estimator for data subject to censoring is the Kaplan-Meier (KM) or product-limit (PL) estimator. The optimality properties of this estimator applied to time-to-event data (consistency, etc.) under the assumptions of random censorship have been established. However, whenever the relationship between cost and survival time includes an error term to account for random differences among patients' costs, the dependency between cumulative treatment cost at the time of censoring and at the survival time results in KM giving biased estimates. A similar phenomenon has previously been noted in the context of estimating quality-adjusted survival time. We propose an estimator for mean cost which exploits the underlying relationship between total treatment cost and survival time. The proposed method utilizes either parametric or nonparametric regression to estimate this relationship and is consistent when this relationship is consistently estimated. We then present simulation results which illustrate the gain in finite-sample efficiency when compared with another recently proposed estimator. The methods are then applied to the estimation of mean cost for two studies where right-censoring was present. The first is the heart failure clinical trial Studies of Left Ventricular Dysfunction (SOLVD). The second is a Health Maintenance Organization (HMO) database study of the cost of ulcer treatment.  相似文献   

9.
Zhao and Tsiatis (1997) consider the problem of estimation of the distribution of the quality-adjusted lifetime when the chronological survival time is subject to right censoring. The quality-adjusted lifetime is typically defined as a weighted sum of the times spent in certain states up until death or some other failure time. They propose an estimator and establish the relevant asymptotics under the assumption of independent censoring. In this paper we extend the data structure with a covariate process observed until the end of follow-up and identify the optimal estimation problem. Because of the curse of dimensionality, no globally efficient nonparametric estimators, which have a good practical performance at moderate sample sizes, exist. Given a correctly specified model for the hazard of censoring conditional on the observed quality-of-life and covariate processes, we propose a closed-form one-step estimator of the distribution of the quality-adjusted lifetime whose asymptotic variance attains the efficiency bound if we can correctly specify a lower-dimensional working model for the conditional distribution of quality-adjusted lifetime given the observed quality-of-life and covariate processes. The estimator remains consistent and asymptotically normal even if this latter submodel is misspecified. The practical performance of the estimators is illustrated with a simulation study. We also extend our proposed one-step estimator to the case where treatment assignment is confounded by observed risk factors so that this estimator can be used to test a treatment effect in an observational study.  相似文献   

10.
Censored survival data are common in clinical trial studies. We propose a unified framework for sensitivity analysis to censoring at random in survival data using multiple imputation and martingale, called SMIM. The proposed framework adopts the δ-adjusted and control-based models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection of censoring not at random assumptions. Also, it targets a broad class of treatment effect estimands defined as functionals of treatment-specific survival functions, taking into account missing data due to censoring. Multiple imputation facilitates the use of simple full-sample estimation; however, the standard Rubin's combining rule may overestimate the variance for inference in the sensitivity analysis framework. We decompose the multiple imputation estimator into a martingale series based on the sequential construction of the estimator and propose the wild bootstrap inference by resampling the martingale series. The new bootstrap inference has a theoretical guarantee for consistency and is computationally efficient compared to the nonparametric bootstrap counterpart. We evaluate the finite-sample performance of the proposed SMIM through simulation and an application on an HIV clinical trial.  相似文献   

11.
In survival analysis with censored data the mean squared error of prediction can be estimated by weighted averages of time-dependent residuals. Graf et al. (1999) suggested a robust weighting scheme based on the assumption that the censoring mechanism is independent of the covariates. We show consistency of the estimator. Furthermore, we show that a modified version of this estimator is consistent even when censoring and event times are only conditionally independent given the covariates. The modified estimators are derived on the basis of regression models for the censoring distribution. A simulation study and a real data example illustrate the results.  相似文献   

12.
When comparing the causal effect of peritoneal dialysis (PD) and hemodialysis (HD) treatment on lowering mortality in renal patients, using observational data, it is necessary to adjust for different forms of confounding and informative censoring. Both the type of dialysis treatment that is started with and mortality are affected by baseline covariates. Longitudinal and baseline variables can affect both the probability of switching from one type of dialysis to the other, and mortality. Longitudinal and baseline variables can also affect the probability of receiving a kidney transplant, possibly causing informative censoring. Adjusting for longitudinal variables by including them as covariates in a regression model potentially causes bias, for instance by losing a possible indirect effect of dialysis on mortality via these longitudinal variables. Instead, we fitted a marginal structural model (MSM) to estimate the causal effect of dialysis type, adjusted for confounding and informative censoring. We used the MSM to compare the hazard of death as well as cumulative survival between the potential treatment trajectories "always PD" and "always HD" over time, conditional on age and diabetes mellitus status. We used inverse probability weighting (IPW) to fit the MSM.  相似文献   

13.
For multicenter randomized trials or multilevel observational studies, the Cox regression model has long been the primary approach to study the effects of covariates on time-to-event outcomes. A critical assumption of the Cox model is the proportionality of the hazard functions for modeled covariates, violations of which can result in ambiguous interpretations of the hazard ratio estimates. To address this issue, the restricted mean survival time (RMST), defined as the mean survival time up to a fixed time in a target population, has been recommended as a model-free target parameter. In this article, we generalize the RMST regression model to clustered data by directly modeling the RMST as a continuous function of restriction times with covariates while properly accounting for within-cluster correlations to achieve valid inference. The proposed method estimates regression coefficients via weighted generalized estimating equations, coupled with a cluster-robust sandwich variance estimator to achieve asymptotically valid inference with a sufficient number of clusters. In small-sample scenarios where a limited number of clusters are available, however, the proposed sandwich variance estimator can exhibit negative bias in capturing the variability of regression coefficient estimates. To overcome this limitation, we further propose and examine bias-corrected sandwich variance estimators to reduce the negative bias of the cluster-robust sandwich variance estimator. We study the finite-sample operating characteristics of proposed methods through simulations and reanalyze two multicenter randomized trials.  相似文献   

14.
Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple time-point treatments with a view toward optimal treatment regimes is of interest in many types of afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate cancer, renal failure, and many others. Methods for analyzing data from SRCTs exist but they are either inefficient or suffer from the drawbacks of estimating equation methodology. We describe an estimation procedure, targeted maximum likelihood estimation (TMLE), which has been fully developed and implemented in point treatment settings, including time to event outcomes, binary outcomes and continuous outcomes. Here we develop and implement TMLE in the SRCT setting. As in the former settings, the TMLE procedure is targeted toward a pre-specified parameter of the distribution of the observed data, and thereby achieves important bias reduction in estimation of that parameter. As with the so-called Augmented Inverse Probability of Censoring Weight (A-IPCW) estimator, TMLE is double-robust and locally efficient. We report simulation results corresponding to two data-generating distributions from a longitudinal data structure.  相似文献   

15.
In clinical trials of chronic diseases such as acquired immunodeficiency syndrome, cancer, or cardiovascular diseases, the concept of quality-adjusted lifetime (QAL) has received more and more attention. In this paper, we consider the problem of how the covariates affect the mean QAL when the data are subject to right censoring. We allow a very general form for the mean model as a function of covariates. Using the idea of inverse probability weighting, we first construct a simple weighted estimating equation for the parameters in our mean model. We then find the form of the most efficient estimating equation, which yields the most efficient estimator for the regression parameters. Since the most efficient estimator depends on the distribution of the health history processes, and thus cannot be estimated nonparametrically, we consider different approaches for improving the efficiency of the simple weighted estimating equation using observed data. The applicability of these methods is demonstrated by both simulation experiments and a data example from a breast cancer clinical trial study.  相似文献   

16.
In biomedical science, analyzing treatment effect heterogeneity plays an essential role in assisting personalized medicine. The main goals of analyzing treatment effect heterogeneity include estimating treatment effects in clinically relevant subgroups and predicting whether a patient subpopulation might benefit from a particular treatment. Conventional approaches often evaluate the subgroup treatment effects via parametric modeling and can thus be susceptible to model mis-specifications. In this paper, we take a model-free semiparametric perspective and aim to efficiently evaluate the heterogeneous treatment effects of multiple subgroups simultaneously under the one-step targeted maximum-likelihood estimation (TMLE) framework. When the number of subgroups is large, we further expand this path of research by looking at a variation of the one-step TMLE that is robust to the presence of small estimated propensity scores in finite samples. From our simulations, our method demonstrates substantial finite sample improvements compared to conventional methods. In a case study, our method unveils the potential treatment effect heterogeneity of rs12916-T allele (a proxy for statin usage) in decreasing Alzheimer's disease risk.  相似文献   

17.
Tian L  Wang W  Wei LJ 《Biometrics》2003,59(4):1008-1015
Suppose that the response variable in a well-executed clinical or observational study to evaluate a treatment is the time to a certain event, and a set of baseline covariates or predictors was collected for each study patient. Furthermore, suppose that a significant number of study patients had nontrivial, long-term adverse effects from the treatment. A commonly posed question is how to use these covariates from the study to identify future patients who would (or would not) benefit from the treatment. In this article, we present "point" and "interval" estimates for the set of covariate or predictor vectors associated with a specific patient survival status, e.g., long- (or short-) term survival, in the presence of censoring. These estimates can be easily displayed on a two-dimensional plane, even for the case with high-dimensional covariate vectors. These simple numerical and graphical procedures provide useful information for patient management and/or the design of future studies, which are key issues in pharmacogenomics with genetic markers. The new proposal is illustrated with a data set from a cancer study for treating multiple myeloma.  相似文献   

18.
Zucker DM  Spiegelman D 《Biometrics》2004,60(2):324-334
We consider the Cox proportional hazards model with discrete-valued covariates subject to misclassification. We present a simple estimator of the regression parameter vector for this model. The estimator is based on a weighted least squares analysis of weighted-averaged transformed Kaplan-Meier curves for the different possible configurations of the observed covariate vector. Optimal weighting of the transformed Kaplan-Meier curves is described. The method is designed for the case in which the misclassification rates are known or are estimated from an external validation study. A hybrid estimator for situations with an internal validation study is also described. When there is no misclassification, the regression coefficient vector is small in magnitude, and the censoring distribution does not depend on the covariates, our estimator has the same asymptotic covariance matrix as the Cox partial likelihood estimator. We present results of a finite-sample simulation study under Weibull survival in the setting of a single binary covariate with known misclassification rates. In this simulation study, our estimator performed as well as or, in a few cases, better than the full Weibull maximum likelihood estimator. We illustrate the method on data from a study of the relationship between trans-unsaturated dietary fat consumption and cardiovascular disease incidence.  相似文献   

19.
We investigate the use of follow-up samples of individuals to estimate survival curves from studies that are subject to right censoring from two sources: (i) early termination of the study, namely, administrative censoring, or (ii) censoring due to lost data prior to administrative censoring, so-called dropout. We assume that, for the full cohort of individuals, administrative censoring times are independent of the subjects' inherent characteristics, including survival time. To address the loss to censoring due to dropout, which we allow to be possibly selective, we consider an intensive second phase of the study where a representative sample of the originally lost subjects is subsequently followed and their data recorded. As with double-sampling designs in survey methodology, the objective is to provide data on a representative subset of the dropouts. Despite assumed full response from the follow-up sample, we show that, in general in our setting, administrative censoring times are not independent of survival times within the two subgroups, nondropouts and sampled dropouts. As a result, the stratified Kaplan-Meier estimator is not appropriate for the cohort survival curve. Moreover, using the concept of potential outcomes, as opposed to observed outcomes, and thereby explicitly formulating the problem as a missing data problem, reveals and addresses these complications. We present an estimation method based on the likelihood of an easily observed subset of the data and study its properties analytically for large samples. We evaluate our method in a realistic situation by simulating data that match published margins on survival and dropout from an actual hip-replacement study. Limitations and extensions of our design and analytic method are discussed.  相似文献   

20.
The modeling of lifetime (i.e. cumulative) medical cost data in the presence of censored follow-up is complicated by induced informative censoring, rendering standard survival analysis tools invalid. With few exceptions, recently proposed nonparametric estimators for such data do not extend easily to handle covariate information. We propose to model the hazard function for lifetime cost endpoints using an adaptation of the HARE methodology (Kooperberg, Stone, and Truong, Journal of the American Statistical Association, 1995, 90, 78-94). Linear splines and their tensor products are used to adaptively build a model that incorporates covariates and covariate-by-cost interactions without restrictive parametric assumptions. The informative censoring problem is handled using inverse probability of censoring weighted estimating equations. The proposed method is illustrated using simulation and also with data on the cost of dialysis for patients with end-stage renal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号