首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and Drosophila gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed that the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior.  相似文献   

2.
Widespread pigmentation diversity coupled with a well‐defined genetic system of melanin synthesis and patterning in Drosophila provides an excellent opportunity to study phenotypes undergoing evolutionary change. Pigmentation variation is highly correlated with different ecological variables and is thought to reflect adaptations to different environments. Several studies have linked candidate genes from Drosophila melanogaster to intra‐population variation and interspecific morphological divergence, but less clearly to variation among populations forming pigmentation clines. We characterized a new thoracic trident pigmentation cline in D. melanogaster populations from eastern Australia, and applied a candidate gene approach to explain the majority of the geographically structured phenotypic variation. More melanized populations from higher latitudes tended to express less ebony than their tropical counterparts, and an independent artificial selection experiment confirmed this association. By partitioning temperature dependent effects, we showed that the genetic differences underlying clinal patterns for trident variation at 25 °C do not explain the patterns observed at 16 °C. Changes in thoracic trident pigmentation could be a common evolutionary response to climatically mediated environmental pressures. On the Australian east coast most of the changes appear to be associated with regulatory divergence of the ebony gene but this depends on temperature.  相似文献   

3.
Understanding the evolutionary potential of morphological evolution is still a major problem in evolutionary biology. In this study, we tried to quantify the amount of variation of different traits among species of a Drosophila clade reared under standard conditions. Nineteen different traits have been measured on nine species of the same clade, the Neotropical saltans group of Drosophila. Measured traits can be distributed into five categories: size‐traits (wing and thorax), shape indices (ratios among the size traits), number of sternopleural bristles on the thorax, number of abdominal bristles on successive sternites, and dorsal pigmentation of abdomen. All species are of medium size with a generally dark pigmentation. A remarkable feature is the presence of numerous bristles on the 6th sternite of the males, while this segment is bare in other Drosophila species. A multivariate analysis revealed that it was possible to discriminate all the investigated species by using the complete set of measured traits. For each trait, phenotypic variability was investigated at the within‐ and between‐species levels. As a rule, the interspecific coefficient of variation (CV) was much greater than the within species CV, and it is proposed to call it realized evolvability. All possible correlations were calculated between traits across species, providing many unexpected results. Size traits were highly correlated among them, but not correlated with shape indices. Abdominal traits (bristles and pigmentation) were correlated, but often in opposite directions, with thoracic shape indices. Tergite pigmentation was negatively correlated with bristle number on sternite. For the moment, most of the correlations cannot be explained by developmental processes or parallel selective pressures. Nonetheless, mapping the evolution of the two characters on a molecular phylogeny of the studied species revealed two opposite phylogenetic trends for abdominal pigmentation and setation, respectively. Our data suggest a need for similar studies in other well‐defined Drosophila clades.  相似文献   

4.
To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo‐distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance‐generating developmental processes occur and/or the magnitude of variation that they produce favor proximo‐distal, rather than anterior‐posterior, modularity in the Drosophila wing.  相似文献   

5.
6.
1. Species of Drosophilidae are frequently used as model organisms, but their relationships with the environment, particularly in immature stages, remain poorly known. 2. This is the most comprehensive survey to date of fruit‐breeding drosophilids and their hosts in the Neotropics. Drosophilid host‐utilisation patterns were analysed as to geographic origin (native versus exotic) and level of specialisation. 3. The 180 species of plants recorded as drosophilid hosts are distributed across the main Angiosperm lineages and fleshy‐fruited orders; plant families that hosted the greatest number of drosophilid species were Arecaceae, Moraceae, and Myrtaceae. The 100 nominal drosophilid species recorded breeding in fruits belong to just over one‐third of Neotropical genera; most species (91) belong to Drosophila. Drosophilid species with the greatest resource breadth were Drosophila simulans, Drosophila nebulosa, and Zaprionus indianus. 4. Exotic drosophilids breed in more plant species than Neotropical drosophilids and use exotic hosts more frequently, possibly because they are generalists that have survived the trial of introduction and establishment in the Neotropics. Native drosophilids are more variable in resource breadth and sometimes adopt exotic hosts. 5. Amongst the 49 drosophilids with enough records for analysis (> 4), 48 were categorised as generalists. One possible explanation for such overwhelming generalism is the high diversity of Neotropical habitat or hosts. A second, non‐exclusive explanation, suggested by recent studies and empirically supported by the absence of host specialisation found in this study, is that drosophilids could be selective of the dominant yeasts and bacteria in host tissue, and not of the hosts themselves.  相似文献   

7.
Gilchrist  George W.  Huey  Raymond B.  Serra  Lluís 《Genetica》2001,(1):273-286
Parallel latitudinal clines across species and continents provide dramatic evidence of the efficacy of natural selection, however little is known about the dynamics involved in cline formation. For example, several drosophilids and other ectotherms increase in body and wing size at higher latitudes. Here we compare evolution in an ancestral European and a recently introduced (North America) cline in wing size and shape in Drosophila subobscura. We show that clinal variation in wing size, spanning more than 15 degrees of latitude, has evolved in less than two decades. In females from Europe and North America, the clines are statistically indistinguishable however the cline for North American males is significantly shallower than that for European males. We document that while overall patterns of wing size are similar on two continents, the European cline is obtained largely through changing the proximal portion of the wing, whereas the North American cline is largely in the distal portion. We use data from sites collected in 1986/1988 (Pegueroles et al. 1995) and our 1997 collections to compare synchronic (divergence between contemporary populations that share a common ancestor) and allochronic (changes over time within a population) estimates of the rates of evolution. We find that, for these populations, allochronically estimated evolutionary rates within a single population are over 0.02 haldanes (2800 darwins), a value similar in magnitude to the synchronic estimates from the extremes of the cline. This paper represents an expanded analysis of data partially presented in Huey et al. (2000).  相似文献   

8.
Secondary sexual traits can be indicators of individual condition that may present seasonal polyphenism as a result of the differential costs of expression along the season. Wing spots in male damselflies of the Calopterygidae family are secondary sexual traits associated with intrasexual competition and mate choice. Hetaerina titia Drury is a calopterygid damselfly where males show red and black wing spots, contrasting with other species of the genus whose males only express a red wing spot. In the present study, we evaluate the seasonal variation of the expression of male's red and black wing spots and their allometric patterns. Additionally, we measure male condition in the form of proteins, lipids, soluble carbohydrates and glycogen in early and late seasons. Black wing spots present higher variation than red wing spots and males of the late season are more pigmented. Allometry is positive for wing red spot in the early season and for black spot in the late season. Males of the late season present a higher concentration of proteins, soluble carbohydrates and glycogen, although there is no variation in the lipid content. The results of the present study suggest that, in H. titia males, black pigmentation replaces the function of the red pigmentation to signal condition. Both traits, however, may be heavily affected by environmental situations (e.g. food availability).  相似文献   

9.
Ecologically and evolutionarily oriented research on learning has traditionally been carried out on vertebrates and bees. While less sophisticated than those animals, fruit flies (Drosophila) are capable of several forms of learning, and have the advantage of a short generation time, which makes them an ideal system for experimental evolution studies. This review summarizes the insights into evolutionary questions about learning gained in the last decade from evolutionary experiments on Drosophila. These experiments demonstrate that Drosophila has the genetic potential to evolve a substantially improved learning performance in ecologically relevant learning tasks. In at least one set of selected populations, the improved learning generalized to a task other than that used to impose selection, involving a different behavior, different stimuli, and a different sensory channel for the aversive reinforcement. This improvement in learning ability was associated with reductions in other fitness-related traits, such as larval competitive ability and lifespan, pointing to evolutionary trade-offs for improved learning. These trade-offs were confirmed by other evolutionary experiments where a reduction in learning performance was observed as a correlated response to selection for tolerance to larval nutritional stress or for delayed aging. Such trade-offs could be one reason why fruit flies have not fully used up their evolutionary potential for learning. Finally, another evolutionary experiment with Drosophila provided the first direct evidence for the long-standing idea that learning can under some circumstances accelerate and in others slow down genetically based evolutionary change. These results demonstrate the usefulness of fruit flies as a model system to address evolutionary questions about learning.  相似文献   

10.
In vitro alcohol dehydrogenase (ADH) activity was measured in adults of species belonging to Drosophila and to the related genus Zaprionus. Data were analyzed according to the known breeding sites and the level of ethanol tolerance of these species. Alcohol dehydrogenase activity was assayed with both ethanol (E) and isopropanol (I). Our results show a very broad range of activities among the 71 species investigated, the ratio of the highest value observed (D. melanogaster) to the lowest (D. pruinosa) being 65:1. A general positive correlation was found between the level of ADH activity and the capacity to detoxify ethanol. Nevertheless, many species show exceptions to this rule. Contrary to a logical expectation, adaptation to high alcoholic resources, which has been a recurrent evolutionary event, was not mediated by a more efficient use of ethanol, that is, an increase of the E/I ratio. This ratio seems to be quite variable according to the phylogeny and is especially low in the subgenus Sophophora as well as in Zaprionus. Alcohol tolerance clearly is related to the larval habitat of the species and shows that adaptation to alcoholic resources has been a major evolutionary challenge in drosophilids. This adaptation is not related to phylogeny, having occurred independently several times during the evolution of the group. Finally, it should be borne in mind that, besides metabolization and detoxification, other physiological processes such as nervous-system tolerance or ethanol excretion may be involved in ethanol tolerance, and such functions also should be investigated. Environmental ethanol, which is certainly a major ecological parameter for many drosophilids, has selected a diversity of physiological adaptations, all related to the Adh locus, but presumably much more complicated than was previously believed.  相似文献   

11.
Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size‐related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species.  相似文献   

12.
Many developmental traits that are critical to the survival of the organism are also robust. These robust traits are resistant to phenotypic change in the face of variation. This presents a challenge to evolution. In this article, we asked whether and how a well-established robust trait, Drosophila segment patterning, changed over the evolutionary history of the genus. We compared segment position scaled to body length at the first-instar larval stage among 12 Drosophila species. We found that relative segment position has changed many times across the phylogeny. Changes were frequent, but primarily small in magnitude. Phylogenetic analysis demonstrated that rates of change in segment position are variable along the Drosophila phylogenetic tree, and that these changes can occur in short evolutionary timescales. Correlation between position shifts of segments decreased as the distance between two segments increased, suggesting local control of segment position. The posterior-most abdominal segment showed the highest magnitude of change on average, had the highest rate of evolution between species, and appeared to be evolving more independently as compared to the rest of the segments. This segment was exceptionally elongated in the cactophilic species in our dataset, raising questions as to whether this change may be adaptive.  相似文献   

13.
Five morphometrical traits (wing and thorax length, ovariole number, and thoracic and female abdomen pigmentation) were investigated in laboratory stocks of 20 species belonging to the Drosophila obscura group (subgenus Sophophora). These species originated from four biogeographical regions and represent all five of the presently recognized, taxonomic subgroups. Size‐related traits (wing and thorax length) were highly variable across species, and interspecific variation explained more than 90% of total variability. In both traditional and phylogenetic analyses, wing size was positively correlated with latitude of origin. These interspecific correlations were however notably weaker than those for intraspecific correlations. Wing/thorax ratio, which may be related to flight capacity, showed little variation. Ovariole number was highly variable (range 27–53) both within and between species, and was positively correlated with the wing/thorax ratio, suggesting that species with relatively large ovaries have relatively low wing loading. Although many species are completely dark, 11 had some regions of light coloration. A light thorax with a median darkening was observed in six species. A variable pigmentation of abdominal tergites, in females only, was found in nine species, belonging to three subgroups only. With respect to both molecular phylogeny and morphometrical evolution, the D. obscura subgroup is probably now the best investigated clade in Drosophila.  相似文献   

14.
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco‐evo‐devo model, into distinct measurable traits related to color and color pattern. We investigate intra‐ and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.  相似文献   

15.
We are interested in elucidating the extent to which lekking Hawaiian Drosophila species have diverged from their continental counterparts, which engage in sexual behavior at communal food sources, with regard to the chemical communication systems that the flies employ. Accordingly, we have analyzed flies from three closely related Hawaiian Drosophila species in the adiastola subgroup. These species are of interest because the males engage in a unique behavior: while courting, they raise their abdomens over their heads and emit anal droplets. Analysis of the flies' behavior, the hydrocarbons in males' anal droplets, and males' cuticular hydrocarbons suggest that females' responses to males may be mediated by cuticular pheromones and/or pheromones in males' extruded droplets that enable the females to distinguish conspecific from heterospeciflc males. Conversely, perception of cuticular hydrocarbons from conspecific females enables D. adiastola males to distinguish females from a closely related species from conspecific females. On the basis of these observations, we suggest that the adiastola subgroup species are unique among drosophilids in that they utilize an anal droplet-mediated pheromone communication system, some or all components of which are species specific. However, the lekking Hawaiian Drosophila species are similar to D. melanogaster and related continental species in that the Hawaiian flies employ a cuticular pheromone communication system, some components of which are sex and species-specific.  相似文献   

16.
17.
Flight has conferred an extraordinary advantage to some groups of animals. Wing shape is directly related to flight performance and evolves in response to multiple selective pressures. In some species, wings have ornaments such as pigmented patches that are sexually selected. Since organisms with pigmented wings need to display the ornament while flying in an optimal way, we might expect a correlative evolution between the wing ornament and wing shape. We examined males from 36 taxa of calopterygid damselflies that differ in wing pigmentation, which is used in sexual displays. We used geometric morphometrics and phylogenetic comparative approaches to analyse whether wing shape and wing pigmentation show correlated evolution. We found that wing pigmentation is associated with certain wing shapes that probably increase the quality of the signal: wings being broader where the pigmentation is located. Our results also showed correlated evolution between wing pigmentation and wing shape in hind wings, but not in front wings, probably because hind wings are more involved in signalling than front wings. The results imply that the evolution of diversity in wing pigmentations and behavioural sexual displays might be an important driver of speciation due to important pre-copulatory selective pressures.  相似文献   

18.
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.  相似文献   

19.
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems.  相似文献   

20.
Drosophila is the genus responsible for the birth of experimental genetics, but the taxonomy of drosophilids is difficult because of the overwhelming diversity of the group. In this study, we assembled sequences for 358 species (14 genera, eight subgenera, 57 species groups, and 65 subgroups) to generate a maximum‐likelihood topology and a Bayesian timescale. In addition to sampling an unprecedented diversity of Drosophila lineages, our analyses incorporated a geographical perspective because of the high levels of endemism. In our topology, Drosophila funebris (Fabricius, 1787) (the type species of Drosophila) is tightly clustered with the pinicola subgroup in a North American clade within subgenus Drosophila. The type species of other drosophilid genera fall within the Drosophila radiation, presenting interesting prospects for the phylogenetic taxonomy of the group. Our timescale suggests that a few drosophilid lineages survived the Cretaceous–Palaeogene (K‐Pg) extinction. The drosophilid diversification began during the Palaeocene in Eurasia, but peaked during the Miocene, an epoch of drastic climatic changes. The most recent common ancestor of the clades corresponding to subgenera Sophophora and Drosophila lived approximately 56 Mya. Additionally, Hawaiian drosophilids diverged from an East Asian lineage approximately 26 Mya, which is similar to the age of the oldest emerging atoll in the Hawaiian–Emperor Chain. Interestingly, the time estimates for major geographical splits (New World versus Asia and Africa versus Asia) were highly similar for independent lineages. These results suggest that vicariance played a significant role in the radiation of fruit flies. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号