首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the hindlimb myology of Milvago chimango. This member of the Falconidae: Polyborinae is a generalist and opportunist that can jump and run down prey on the ground, unlike Falconinae that hunt birds in flight and kill them by striking with its talons. Due to differences in the locomotion habits between the subfamilies, we hypothesized differences in their hindlimb myology. Gross dissections showed that the myology of M. chimango is concordant with that described of other falconids, except for the following differences: the m. flexor cruris medialis has one belly with a longitudinal division; the m. iliotibialis lateralis does not have a connection with the m. iliofibularis; the m. fibularis longus is strongly aponeurotic; the m. tibialis cranialis lacks an accessory tendons and the m. flexor hallucis longus has one place of origin, instead of two. The presence of the m. flexor cruris lateralis can be distinguished as it has been described absent for the Falconidae. We associated its presence with the predominant terrestrial habit of the M. chimango. Each muscle dissected was weighed and the relationship between flexors and extensors at each joint was assessed. The extensor muscles predominated in all joints in M. chimango. Among the flexors, the m. flexor hallucis longus was the heaviest, which could be related to the importance of the use of its talons to obtain food. J. Morphol. 274:1191–1201, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The Polyborinae is the most diverse subfamily of the Falconidae in terms of both morphology and behaviour, and includes falconet‐shaped birds (Spiziapteryx), arboreal omnivores (Daptrius, Ibycter), as well as terrestrial generalists and scavengers (Caracara, Milvago and Phalcoboenus). The Polyborinae are endemic to the New World, with all but one species (Caracara cheriway) being restricted to Central and South America. Using over 7300 bp of mitochondrial and nuclear sequence data, we aim to clarify the taxonomy and biogeography of the Polyborinae. The genus Milvago was unexpectedly found to be polyphyletic, with Chimango Caracara Milvago chimango being related to the genus Phalcoboenus and Yellow‐headed Caracara Milvago chimachima being sister to Daptrius. Furthermore, very low genetic divergence was found among the four species of the genus Phalcoboenus, with the lowest divergence being between White‐throated Caracara Phalcoboenus albogularis and Mountain Caracara Phalcoboenus megalopterus. Our divergence time analyses revealed that the Polyborinae started to diversify in the Miocene, at about 14 Ma, and that the generalist/scavenger behaviour in the Falconidae appeared between 14 and 6.6 Ma. All speciation events within the caracaras occurred during the Pleistocene. This situation differs from the general pattern described for forest birds, in which most diversification events are older, occurring primarily in the Pliocene and Miocene.  相似文献   

3.
Barn Owls (Tytonidae) are nocturnal raptors with the largest geographical distribution among Strigiformes. Several osteological, morphometrical, and biomechanical studies of this species were performed by previous authors. Nevertheless, the myology of forelimb and tail of the Barn Owls is virtually unknown. This study is the first detailed myological study performed on the wing and tail of the American Barn Owl (Tyto furcata). A total of 11 specimens were dissected and their morphology and muscle masses were described. Although T. furcata has the wing and tail myological pattern present in other species of Strigiformes, some peculiarities were observed including a difference in the attachment of m. pectoralis propatagialis due to the lack of the os prominence, and the presence of an osseous arch in the radius that seems to widen the anchorage area of the mm. pronator profundus, extensor longus alulae, and extensor longus digiti majoris. Furthermore, the m. biceps brachii has an unusual extra belly that flexes the forearm. The interosseous muscles have a small size and lacks ossified tendons. This feature may be indicative of a lower specialization in the elevation and flexion of the digiti majoris. Forelimb and tail muscle mass account for 10.66 and 0.24% of the total body mass, respectively. Forelimb muscle mass value is similar to the nocturnal (Strigiformes) and diurnal (Falconidae and Accipitridae) raptors, while the tail value is lower than in the diurnal raptors (Falconidae and Accipitridae). The myological differences with other birds of prey are here interpreted in association with their “parachuting” hunting style. This work complements our knowledge of the axial musculature of the American Barn owls, and provides important information for future studies related to functional morphology and ecomorphology.  相似文献   

4.
RETO SPAAR 《Ibis》1997,139(3):523-535
The comparison of flight styles and flight parameters of migrating raptors in Israel revealed the following. (1) Climbing rate in thermal circling did not differ between species, indicating that chiefly the strength of thermal updrafts determined the climbing rate and that morphological features were less relevant. (2) In interthermal gliding, air speed was positively and gliding angle negatively related to the species' average body mass. Heavier species glided faster and had smaller gliding angles. (3) In soaring and gliding flight, cross-country speed relative to the air was positively related to the species' body mass; it was obviously the result of the gliding ability increasing with body mass. (4) Eagles and buzzards used soaring and gliding flight for more than 95% of the observation time. Additional soaring in a straight line whilst gliding was extensively used by the Steppe Eagle Aquila nipalensis, Lesser Spotted Eagle Aquila pomarina and Booted Eagle Hieraætus pennatus and even more frequently by the resident species, the Griffon Vulture Gyps fulvus and Shorttoed Eagle Circaetus gallicus. Smaller species, such as the Levant Sparrowhawk Accipiter brevipes, harriers (Circus sp.) and small falcons (Falco sp.). showed the highest proportion of flapping and gliding flight (9–33%). (5) In a comparison of the flight parameters and proportions of flight styles, a cluster analysis distinguished two main groups: The first consisted of Montagu's Harrier Circus pygargus, Pallid Harrier Circus macrourus, Levant Sparrowhawk and small falcons; their flight behaviour was characterized by both the high proportion of flapping and the low gliding performance. The second group comprised the typical soaring migrants: Steppe Eagle, Lesser Spotted Eagle, Booted Eagle, Steppe Buzzard Buteo buteo vulpinus, Honey Buzzard Pernis apivorus and Egyptian Vulture Neophron percnopterus, and they had very similar flight behaviour and were closely clustered. The Black Kite Milvus migrans and Marsh Harrier Circus aeruginosus were intermediate between typical soarers and flappers. The two resident species, Griffon Vulture and Short-toed Eagle, were grouped separately from the soaring migrants.  相似文献   

5.
Flightin is a protein in flight muscles and is crucial for the flight capacity. Flightin also has been proposed as a protein with deep ancestry and functions outside of flight muscles. However, functional and molecular characterization of flightin achieved so far is mainly in flight muscles of Drosophila. Here, we cloned the flightin (Bd-flightin) gene and tested its expression and function in Bactrocera dorsalis, an important migratory pest. Phylogenetic analysis based on flightin orthologs revealed that the divergence of flightin is consistent with the taxonomic classification of insects. Motif analysis indicated obvious variations in flightin orthologs, which may have occurred during speciation and functional differentiation. The expression is quite low during egg and larval stages, which largely increased during pupal stage and then peaked at the beginning of the adult stage. Bd-flightin also showed tissue- and age-specific expression patterns during adult stage. The relative expression level is low in wing, head, ovary and testis, which is relatively higher in leg and abdominal wall and much higher in thorax. Injection of late pupae and newly eclosed adults with 1 μg flightin dsRNA per insect both significantly reduced the expression of flightin and the flight capacity in males and females. In addition, silencing the expression of flightin also decreased the weight ratio of thorax and whole-body. These results suggested that flightin plays important roles in flight muscle development and flight function in B. dorsalis, which can potentially be used to control the flight behaviour of the fruit fly.  相似文献   

6.
We compared eggshell thickness of hatched eggs with that of non-developed eggs in endangered falcon taxa to explore the effect of embryo development on eggshell thinning. To our knowledge, this has never been examined before in falcons, despite the fact that eggshell thinning due to pollutants and environmental contamination is often considered the most common cause of egg failure in falcons. Because of the endangered nature of these birds, and the difficulty in gaining access to the nests and their eggs, there is a large gap in our knowledge regarding eggshell thickness variation and the factors affecting it. We used a linear mixed-effects (LME) model to explore the variation in eggshell thickness (n = 335 eggs) in relation to the developmental stage of the eggs, but also in relation to the falcon taxa, the laying sequence and the study zone. Female identity (n = 69) and clutch identity (n = 98) were also included in the LME model. Our results are consistent with the prediction that eggshell thickness decreases during incubation because of the important effect of calcium uptake by the embryo during development. Our results also show that eggs laid later in the sequence had significantly thinner eggshells. In this study, we provide the first quantitative data on eggshell thickness variation of hatched eggs in different falcon taxa that were not subjected to contamination or food limitation (i.e., bred under captive conditions). Because eggshell thickness strongly influences survival and because the species examined in this study are endangered, our data represent a valuable control for future studies on the effects of pollution on eggshells from wild populations and thus are an important contribution to the conservation of falcons.  相似文献   

7.
Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca2+]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca2+] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca2+]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca2+] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca2+]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca2+]. However, calcium tension saturated at slightly lower [Ca2+] than stretch-activated tension, such that as [Ca2+] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca2+] is the main mechanism by which power is varied during flight.  相似文献   

8.
Here, we review the diversity, evolutionary history, and genomics of falcons in the context of their conservation and interactions with humans, and provide a perspective on how new genomic approaches may be applied to expand our knowledge of these topics. For millennia, humans and falcons (genus Falco) have developed unique relationships through falconry, religious rituals, conservation efforts, and human lifestyle transitions. From an evolutionary perspective, falcons remain an enigma. Having experienced several recent radiations, they have reached an unparalleled and almost global distribution, with an intrageneric species richness that is roughly an order of magnitude higher than typical within their family (Falconidae) and across other birds (Phylum: Aves). This diversity has evolved in the context of unusual genomic architecture that includes unique chromosomal rearrangements, relatively low chromosome counts, extremely low microdeletion rates, and high levels of nuclear mitochondrial DNA segments (NUMTs). These genomic peculiarities combine with high levels of ecological and organismal diversity and a legacy of human interactions to make falcons obvious candidates for evolutionary studies, providing unique research opportunities in common topics, including chromosomal evolution, the mechanics of speciation, local adaptation, domestication, and urban adaptation.  相似文献   

9.
Honeybees, Apis mellifera, who show temporal polyethism, begin their adult life performing tasks inside the hive (hive bees) and then switch to foraging when they are about 2–3 weeks old (foragers). Usually hive tasks require little or no flying, whereas foraging involves flying for several hours a day and carrying heavy loads of nectar and pollen. Flight muscles are particularly plastic organs that can respond to use and disuse, and accordingly it would be expected that adjustments in flight muscle metabolism occur throughout a bee’s life. We thus investigated changes in lifetime flight metabolic rate and flight muscle biochemistry of differently aged hive bees and of foragers with varying foraging experience. Rapid increases in flight metabolic rates early in life coincided with a switch in troponin T isoforms and increases in flight muscle maximal activities (V max) of the enzymes citrate synthase, cytochrome c oxidase, hexokinase, phosphofructokinase, and pyruvate kinase. However, further increases in flight metabolic rate in experienced foragers occurred without additional changes in the in vitro V max of these flight muscle metabolic enzymes. Estimates of in vivo flux (v) compared to maximum flux of each enzyme in vitro (fractional velocity, v/V max) suggest that most enzymes operate at a higher fraction of V max in mature foragers compared to young hive bees. Our results indicate that honeybees develop most of their flight muscle metabolic machinery early in life. Any further increases in flight metabolism with age or foraging experience are most likely achieved by operating metabolic enzymes closer to their maximal flux capacity.  相似文献   

10.
11.
Predators use diverse hunting strategies to maximize hunting success, while preys adopt anti‐predator strategies to maximize escape chances, among which flocking, communal roosting, and the related collective responses are a common pattern in gregarious species. Prey‐predator interactions involving a single predator and flocks, a common situation in birds, have received little attention. We studied predation behaviour and success of peregrine falcons Falco peregrinus on starlings Sturnus vulgaris, a highly gregarious species, in proximity of two winter roosts. A total of 328 hunting sequences, with an overall success of 23.1% were recorded. They usually consisted of several attacks, predation success being higher when hunting sequences lasted less than 1.5 min, included less than 3 attacks and no other falcons were hunting simultaneously. Predation success was higher when hunts were directed on singletons than on flocks. However, most hunting sequences were directed towards flocks. Nine hunting strategies on flocks were identified. The most frequent was the ‘surprise attack’, which was also the most successful. We suggest that this strategy minimizes the amount of anti‐predator display elicited by flocks and economizes energy spent in hunting. The constant predation pressure did not seem to affect the use of roosts by starlings, consistent with the ‘dilution’ hypothesis, while falcons captured at least one prey item every evening. Communal roosting may benefit predator and prey, as both sides could have reached a mutual local equilibrium.  相似文献   

12.
The aims of this study were to determine the incidence of the filarial avian nematode Serratospiculum seurati in falcons from Kuwait, report clinical signs and find an effective therapy. Naturally occurring S. seurati infestation was diagnosed in 149 (8.7%) out of 1,706 captive falcons examined between May 2003 and April 2005, and 140 of these were treated with melarsomine at dosage of 0.25 mg/kg injected intramuscularly for two days, and ivermectin, injected once at the dose of 1 mg/kg, 10 days later. Infestation was reportedly symptomatic in 107 (71.8%) and non-symptomatic in 42 (28.2%) falcons. Signs reported more often were dyspnoea (58.8%), reduced speed and strength in flight (56%), weight loss (38.3%), anorexia/poor appetite (22.4%) and lethargy (16.8%). After administration of melarsomine, signs disappeared within 1-10 days in symptomatic birds and improvement of flight performances was noted in non-symptomatic birds. Dead adult parasites were ejected in 22 cases. Embryonated eggs were not detected in coproscopic checks made 10 and 40 days after the end of therapy, in association with lasting clinical remission. The main conclusion is that Serratospiculum seurati is overall pathogenic for birds of prey in the Middle East and that melarsomine + ivermectin can be an effective protocol of therapy eliminating both clinical signs and parasites.  相似文献   

13.
The shaker muscles in the tails of rattlesnakes are used to shake the rattle at very high frequencies. These muscles are physiologically specialized for sustaining high‐frequency contractions. The tail skeleton is modified to support the enlarged shaker muscles, and the muscles have major anatomical modifications when compared with the trunk muscles and with the tail muscles of colubrid snakes. The shaker muscles have been known for many years to consist of three large groups of muscles on each side of the tail. However, the identities of these muscles and their serial homologies with the trunk muscles were not previously known. In this study, we used dissection and magnetic resonance imaging of the tail in the Western Diamond‐backed Rattlesnake, Crotalus atrox, to determine that the three largest muscles that shake the rattle are the M. longissimus dorsi, the M. iliocostalis, and the M. supracostalis lateralis. The architecture of these muscles differs from their serial homologs in the trunk. In addition, the rattlesnake tail also contains three small muscles. The M. semispinalis‐spinalis occurs in the tail, where it is a thin, nonvibratory, postural muscle that extends laterally along the neural spines. An additional muscle, which derives from fusion of the M. interarticularis inferior and M. levator costae, shares segmental insertions with the M. longissimus dorsi and M. iliocostalis. Several small, deep ventral muscles probably represent the Mm. costovertebrocostalis, intercostalis series, and transversohypapophyseus. The architectural rearrangements in the tail skeleton and shaker muscles, compared with the trunk muscles, probably relate to their roles in stabilizing the muscular part of the tail and to shaking the rattle at the tip of the tail. Based on comparisons with the tail muscles of a colubrid snake described in the literature, the derived tail muscle anatomy in rattlesnakes evolved either in the pitvipers or within the rattlesnakes. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Studies related to the flight behavior of the bean bug, Riptortus clavatus, an insect pest of soybean, provide information, which can aid the development of management tactics. R. clavatus flight activities were determined using the tethered flight technique in the laboratory and a field study. We compared the flight parameters (flight distance, duration, speed and frequency) of laboratory-reared mated or unmated females and males of different adult age groups, and field-collected females and males from different seasons in a year. Mating effect was only significant for flight frequency, which was higher for unmated adults. Only the flight frequency was different between females and males. Among age groups, 25 d old individuals were shown to have higher flight parameters while the 35 or 45 d old groups showed the lower flight. Among the season, flight activities decreased as the season progressed. The flight distance of R. clavatus in a day was estimated to be 1.6–5.1 km with an average speed of 0.8 m/s from the laboratory data. However, from the field study, it was shown that bean bugs flew a 45–54 m distance with a flight speed of 3.0–3.6 m/s for the first single flight. The second flight was much shorter and slower. We discuss the possible difference of flight parameters between the laboratory and field studies with features of flight mill, variable field conditions and host plant finding behaviors. Further study on flight behavior may provide a better understanding of R. clavatus biology which may guide proper management.  相似文献   

15.
  • 1 The flight apparatus in butterflies, as well as in other insects, is costly to manufacture. Since most animals live in a world where resources are limited, trade‐offs are expected and available resources must thus be allocated between flight and other functions, such as reproduction.
  • 2 To mitigate this trade‐off, previous studies have shown that butterflies can break down flight muscles in the thorax as they age in order to use muscle nutrients for reproduction.
  • 3 Although breakdown of flight muscles is expected to reduce flight ability, relative flight muscle mass (thorax mass/body mass) in many butterfly species does not decrease with age. The aim of the present study was to test the relationship between flight endurance and adult age in the green‐veined white butterfly Pieris napi (L.). The tests were performed in the laboratory at five different temperatures.
  • 4 The results showed that age has a significant influence on butterfly flight endurance; older butterflies showed reduced flight endurance. Male butterflies fly for a longer time than females and flight endurance increases with temperature in both sexes.
  相似文献   

16.
Insect flight muscles have been classified as either synchronous or asynchronous based on the coupling between excitation and contraction. In the moth Manduca sexta, the flight muscles are synchronous and do not display stretch activation, which is a property of asynchronous muscles. We annotated the M. sexta genes encoding the major myofibrillar proteins and analyzed their isoform pattern and expression. Comparison with the homologous genes in Drosophila melanogaster indicates both difference and similarities. For proteins such as myosin heavy chain, tropomyosin, and troponin I the availability and number of potential variants generated by alternative spicing is mostly conserved between the two insects. The exon usage associated with flight muscles indicates that some exon sets are similarly used in the two insects, whereas others diverge. For actin the number of individual genes is different and there is no evidence for a flight muscle specific isoform. In contrast for troponin C, the number of genes is similar, as well as the isoform composition in flight muscles despite the different calcium regulation. Both troponin I and tropomyosin can include COOH-terminal hydrophobic extensions similar to tropomyosinH and troponinH found in D. melanogaster and the honeybee respectively.  相似文献   

17.
Although diurnal birds of prey have historically been placed in a single order due to a number of morphological characters, recent molecular phylogenies have suggested that this is a case of convergence rather than homology, with hawks (Accipitridae) and falcons (Falconidae) forming two distantly related groups within birds. The feather lice of birds have often been used as a model for comparing host and parasite phylogenies, and in some cases there is significant congruence between the two. Thus, studying the phylogeny of the lice of diurnal raptors may be of particular interest with respect to the independent evolution of hawks vs. falcons. Using one mitochondrial gene and three nuclear genes, we inferred a phylogeny for the feather louse genus Degeeriella (which are all obligate raptor ectoparasites) and related genera. This phylogeny indicated that Degeeriella is polyphyletic, with lice from falcons vs. hawks forming two distinct clades. Falcon lice were sister to lice from African woodpeckers, whereas Capraiella, a genus of lice from rollers lice, was embedded within Degeeriella from hawks. This phylogeny showed significant geographical structure, with host geography playing a larger role than host taxonomy in explaining louse phylogeny, particularly within clades of closely related lice. However, the louse phylogeny does reflect host phylogeny at a broad scale; for example, lice from the hawk genus Accipiter form a distinct clade. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 837–847.  相似文献   

18.
Flight behaviour characteristics such as flight altitude and avoidance behaviour determine the species-specific collision risk of birds with wind turbines. However, traditional observational methods exhibit limited positional accuracy. High-resolution GPS telemetry represents a promising method to overcome this drawback. In this study, we used three-dimensional GPS tracking data including high-accuracy tracks recorded at 3-s intervals to investigate the collision risk of breeding male Montagu's Harriers Circus pygargus in the Dutch–German border region. Avoidance of wind turbines was quantified by a novel approach comparing observed flights to a null model of random flight behaviour. On average, Montagu's Harriers spent as much as 8.2 h per day in flight. Most flights were at low altitude, with only 7.1% within the average rotor height range (RHR; 45–125 m). Montagu's Harriers showed significant avoidance behaviour, approaching turbines less often than expected, particularly when flying within the RHR (avoidance rate of 93.5%). For the present state, with wind farms situated on the fringes of the regional nesting range, collision risk models based on our new insights on flight behaviour indicated 0.6–2.0 yearly collisions of adult males (as compared with a population size of c. 40 pairs). However, the erection of a new wind farm inside the core breeding area could markedly increase mortality (up to 9.7 yearly collisions). If repowering of the wind farms was carried out using low-reaching modern turbines (RHR 36–150 m), mortality would more than double, whereas it would stay approximately constant if higher turbines (RHR 86–200 m) were used. Our study demonstrates the great potential of high-resolution GPS tracking for collision risk assessments. The resulting information on collision-related flight behaviour allows for performing detailed scenario analyses on wind farm siting and turbine design, in contrast to current environmental assessment practices. With regard to Montagu's Harriers, we conclude that although the deployment of higher wind turbines represents an opportunity to reduce collision risk for this species, precluding wind energy developments in core breeding areas remains the most important mitigation measure.  相似文献   

19.
Foraging behaviour of bats is supposedly largely influenced by the high costs of flapping flight. Yet our understanding of flight energetics focuses mostly on continuous horizontal forward flight at intermediate speeds. Many bats, however, perform manoeuvring flights at suboptimal speeds when foraging. For example, members of the genus Rhinolophus hunt insects during short sallying flights from a perch. Such flights include many descents and ascents below minimum power speed and are therefore considered energetically more expensive than flying at intermediate speed. To test this idea, we quantified the energy costs of short manoeuvring flights (<2 min) using the Na-bicarbonate technique in two Rhinolophus species that differ in body mass but have similar wing shapes. First, we hypothesized that, similar to birds, energy costs of short flights should be higher than predicted by an equation derived for bats at intermediate speeds. Second, we predicted that R. mehelyi encounters higher flight costs than R. euryale, because of its higher wing loading. Although wing loading of R. mehelyi was only 20% larger than that of R. euryale, its flight costs (2.61 ± 0.75 W; mean ± 1 SD) exceeded that of R. euryale (1.71 ± 0.37 W) by 50%. Measured flight costs were higher than predicted for R. mehelyi, but not for R. euryale. We conclude that R. mehelyi face elevated energy costs during short manoeuvring flights due to high wing loading and thus may optimize foraging efficiency by energy-conserving perch-hunting.  相似文献   

20.
Herein, we compare functional muscle properties among convergent forms of large, obligate avian scavengers. We performed quantitative analyses of all the muscle masses and cross‐sectional areas (CSA) of the wings and hindlimbs of five species from two families, Cathartidae (New World vultures; Cathartes aura and Vultur gryphus) and Accipitridae (Old World vultures and raptors; Gyps africanus, Aquila rapax, and Buteo lineatus). These species comprise two paraphyletic functional groups, raptors (Aquila and Buteo) and vultures (Gyps, Cathartes, and Vultur). Our ordination analyses based on all of the muscles of the wings, hindlimbs, and wing and hindlimb muscles combined produced patterns that appeared to be more related to phylogeny, with a hint of a functional signal in wing muscle CSA. However, when wing muscles were grouped according to their functional roles (upstroke, downstroke, and wing stabilization), the percentages of mass and CSA allocated to the upstroke and stabilizing muscles were 1.4–5% greater in the vultures than in the raptors. Conversely, when hindlimb muscles were grouped according to their roles in grasping and terrestrial locomotion, the percentages of mass and CSA allocated to grasping muscles were 5.9–14% greater in the raptors. Our results provide a baseline for future lines of inquiry aimed at understanding how muscle mass and CSA are affected differentially across locomotor modules, possibly in response to differential demands on wing and hindlimb function experienced by these disparate accipitriform clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号