首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Data are presented on the Hemiptera fauna of a moderately large and topographically diverse area of tropical rain forest in Sulawesi Utara, Indonesia. Insects were sampled using several methods at several sites over a 1-year period. The numbers of described and undescribed species captured is used to predict the number of extant species of both Hemiptera and total insects in the world. The global estimates of 1.84–2.57 million species of insect are much lower than the 10–80 million predicted by Erwin and Stork from a study of tropical Coleoptera. The reasons for believing that the lower estimates are more reliable are discussed.  相似文献   

2.

Background  

Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity.  相似文献   

3.
Combined studies of the communities and interaction networks of bird and insect pollinators are rare, especially along environmental gradients. Here, we determined how disturbance by fire and variation in sugar resources shape pollinator communities and interactions between plants and their pollinating insects and birds. We recorded insect and bird visits to 21 Protea species across 21 study sites and for 2 years in Fynbos ecosystems in the Western Cape, South Africa. We recorded morphological traits of all pollinator species (41 insect and nine bird species). For each site, we obtained estimates of the time since the last fire (range: 2–25 calendar years) and the Protea nectar sugar amount per hectare (range: 74–62 000 g/ha). We tested how post-fire age and sugar amount influence the total interaction frequency, species richness and functional diversity of pollinator communities, as well as pollinator specialization (the effective number of plant partners) and potential pollination services (pollination service index) of insects and birds. We found little variation in the total interaction frequency, species richness and functional diversity of insect and bird pollinator communities, but insect species richness increased with post-fire age. Pollinator specialization and potential pollination services of insects and birds varied differently along the environmental gradients. Bird pollinators visited fewer Protea species at sites with high sugar amount, while there was no such trend for insects. Potential pollination services of insect pollinators to Protea species decreased with increasing post-fire age and resource amounts, whereas potential pollination services of birds remained constant along the environmental gradients. Despite little changes in pollinator communities, our analyses reveal that insect and bird pollinators differ in their specialization on Protea species and show distinct responses to disturbance and resource gradients. Our comparative study of bird and insect pollinators demonstrates that birds may be able to provide more stable pollination services than insects.  相似文献   

4.
Interactions between plants and herbivorous insects have been models for theories of specialization and co‐evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed‐specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole‐body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP‐glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.  相似文献   

5.

Background

Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates.

Methodology/Principal Findings

Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae) of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic) species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs) (n = 284–289). Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2) and 469–481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m) had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation.

Conclusions/Significance

Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons), the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a valuable tool for evaluating biodiversity of hyperdiverse insect communities, especially when exact taxonomic identifications are missing.  相似文献   

6.
Japan is considered a global hot spot of biodiversity. With regard to species diversity, insects are no exception. To date, more than 32,000 insect species have been identified in Japan, while around 100,000 species of insects are estimated to inhabit this country. In this paper, we outline background factors having contributed to diversification of Japanese insects. Of course, the high degree of Japanese insect diversity is the result of many complex factors. In addition to the humid Asian monsoon climate and the extensive latitudinal gradient of habitats, the extremely complex geological history has contributed as an important factor to generate and maintain the high species diversity and endemism. In particular, the independent origins of northeastern and southwestern Japan from the Eurasian continent have greatly contributed to the diverse composition of Japanese insect fauna. To highlight the importance of this process, we introduce some case studies and previously published papers focusing on several insect groups with low dispersal ability. Those cases indicate that the geological history of Japan has played an important role in the differentiation of Japanese insect species. Besides such geological factors, climatic and ecological factors in combination have contributed to the formation of Japanese insect fauna in complicated ways and produced its particularly high degree of biodiversity. The knowledge compiled here will provide useful information for future studies aiming to understand more deeply the processes of speciation and faunal formation of Japanese insects.  相似文献   

7.
Human impacts on genetic diversity are poorly understood yet critical to biodiversity conservation. We used 175 247 COI sequences collected between 1980 and 2016 to assess the global effects of land use and human density on the intraspecific genetic diversity of 17 082 species of birds, fishes, insects and mammals. Human impacts on mtDNA diversity were taxon and scale‐dependent, and were generally weak or non‐significant. Spatial analyses identified weak latitudinal diversity gradients as well as negative effects of human density on insect diversity, and negative effects of intensive land use on fish diversity. The observed effects were predominantly associated with species turnover. Time series analyses found nearly an equal number of positive and negative temporal trends in diversity, resulting in no net monotonic trend in diversity over this time period. Our analyses reveal critical data and theory gaps and call for increased efforts to monitor global genetic diversity.  相似文献   

8.
The astonishing diversity of plants and insects and their entangled interactions are cornerstones in terrestrial ecosystems. Co-occurring with species diversity is the diversity of plant secondary metabolites (PSMs). So far, their estimated number is more than 200 000 compounds, which are not directly involved in plant growth and development but play important roles in helping plants handle their environment including the mediation of plant–insect interactions. Here, we use plant volatile organic compounds (VOCs), a key olfactory communication channel that mediates plant–insect interactions, as a showcase of PSMs. In spite of the cumulative knowledge of the functional, ecological, and microevolutionary roles of VOCs, we still lack a macroevolutionary understanding of how they evolved with plant–insect interactions and contributed to species diversity throughout the long coevolutionary history of plants and insects. We first review the literature to summarize the current state-of-the-art research on this topic. We then present various relevant types of phylogenetic methods suitable to answer macroevolutionary questions on plant VOCs and suggest future directions for employing phylogenetic approaches in studying plant VOCs and plant–insect interactions. Overall, we found that current studies in this field are still very limited in their macroevolutionary perspective. Nevertheless, with the fast-growing development of metabolome analysis techniques and phylogenetic methods, it is becoming increasingly feasible to integrate the advances of these two areas. We highlight promising approaches to generate new testable hypotheses and gain a mechanistic understanding of the macroevolutionary roles of chemical communication in plant–insect interactions.  相似文献   

9.
Estimates of global insect species richness are sometimes based on effective specialization, a calculation used to estimate the number of insect species that is restricted to a particular tree species. Yet it is not clear how effective specialization is influenced by spatial scale or characteristics of the insect community itself (e.g. species richness). We investigated scale dependence and community predictors of effective specialization using 15,907 beetles (583 species) collected by insecticide fogging from the crowns of 96 trees (including 32 Quercus trees) located in Ohio and Indiana. Trees were distributed across 24 forest stands (∼1 ha) nested within six sites (∼10–100 km2) and two ecoregions (> 1000 km2). Using paired-sample randomization tests, we found that effective specialization ( f k ) exhibited negative scale-dependence in early (May–June 2000) and late (August–September 2000) sampling periods. Our average effective specialization ( F ) values — those that are comparable to Erwin's (1982) estimates — ranged from 19% to 97%, and increased as spatial scale decreased. We also found that beetle species richness and the number of shared beetle species across host trees were significant and consistent negative predictors of F . This shows that increases in spatial scale, species richness, and the number of trees (and/or tree species) all coincide with decreases in effective specialization. Collectively, our results indicate that estimates of global insect species richness based on effective specialization at a single spatial scale are overestimating the magnitude of global insect species richness. We propose that scale dependence should be promoted to a central concept in the research program on global estimates of species richness.  相似文献   

10.
International trade is widely acknowledged as a conduit for movement of invasive species, but few studies have directly quantified the invasion risk confronting individual locations of interest. This study presents estimates of the likelihood of successful entry for alien forest insect species at more than 3,000 urban areas in the contiguous United States (US). To develop these location-specific estimates, we first utilized historical merchandise imports and insect incursions data to estimate an annual US rate of alien insect species establishment. Next, we used historical pest interception data to calculate the proportion of all insects arriving at US ports of entry that are associated with forest hosts. We then combined these results to estimate a nationwide establishment rate specifically for alien forest insects. Finally, we employed international and domestic commodity flow networks to allocate this nationwide rate to individual US urban areas. For 2010, we estimated the nationwide rate as 1.89 new alien forest insect species per year. While the establishment rates observed at most urban areas were low (<0.005 new species/year), for a few select areas the rates predict new alien forest insect species establishments every 5–15 years. This national-scale assessment provides a realistic depiction of human-assisted establishment potential in the US as well as functional inputs for quantitative models of invasion. Overall, these analyses support broad-scale biosecurity and management strategies.  相似文献   

11.
Despite its ancient origin, global distribution and abundance in nearly all habitats, the class Collembola is comprised of only 8000 described species and is estimated to number no more than 50 000. Many morphologically defined species have broad geographical ranges that span continents, and recent molecular work has revealed high genetic diversity within species. However, the evolutionary significance of this genetic diversity is unknown. In this study, we sample five morphological species of the globally distributed genus Lepidocyrtus from 14 Panamanian sampling sites to characterize genetic diversity and test morphospecies against the biological species concept. Mitochondrial and nuclear DNA sequence data were analysed and a total of 58 molecular lineages revealed. Deep lineage diversification was recovered, with 30 molecular lineages estimated to have established more than 10 million years ago, and the origin almost all contemporary lineages preceding the onset of the Pleistocene (~2 Mya). Thirty‐four lineages were sampled in sympatry revealing unambiguous cosegregation of mitochondrial and nuclear DNA sequence variation, consistent with biological species. Species richness within the class Collembola and the geographical structure of this diversity are substantially misrepresented components of terrestrial animal biodiversity. We speculate that global species richness of Collembola could be at least an order of magnitude greater than a previous estimate of 50 000 species.  相似文献   

12.
An assessment of animal species diversity in continental waters   总被引:4,自引:4,他引:0  
There is a need for monitoring the status and trends of freshwater biodiversity in order to quantify the impacts of human actions on freshwater systems and to improve freshwater biodiversity conservation. Current projects carrying assessment of freshwater biodiversity focus mainly on leading-better-known groups such as fish, or identify keystone species and/or endemic freshwater systems for conservation purposes. Our purpose is to complete these existing projects by providing quantitative estimates of species number for all freshwater groups on each continent and/or major eco-regions. This article present the results of the first implementation phase carried out from September 2002 to June 2003 and which addressed only freshwater animal species. The project consisted of: (1) compiling existing data from literature, web sites and museum collections; (2) contacting scientific experts of each group to provide a ‘to the best of their knowledge, estimates of species numbers. In this study, we consider as true freshwater species, those that complete part or all of their life cycle in freshwater, and water-dependant species those that need freshwater for food or that permanently use freshwater habitats. The current order of magnitude for known freshwater animal species world wide is 100 000, of which half are insects. Among other groups, there are some 20 000 vertebrate species; 10 000 crustacean species and 5000 mollusc species that are either true freshwater or water-dependant species. The study highlighted gaps in the basic knowledge of species richness at continental and global scales: (1) Some groups such as Protozoa, nematodes or annelids have been less studied and data on their diversity and distribution is scarce. Because current richness estimates for these groups are greatly biased by knowledge availability, we can expect that real species numbers might be much higher. (2) Continents are not equal in the face of scientific studies: South America and Asia are especially lacking global estimates of species richness for many groups, even for some usually well-known ones such as molluscs or insects. The second phase of the project will address freshwater plants and algae. The present status should be considered as a first sketch of the global picture of freshwater biodiversity. We hope that this project will initiate interactive exchange of data to complete and update this first assessment.  相似文献   

13.
Large‐scale biodiversity studies can be more informative if observed diversity in a study site is accompanied by dark diversity, the set of absent although ecologically suitable species. Dark diversity methodology is still being developed and a comparison of different approaches is needed. We used plant data at two different scales (European and seven large regions) and compared dark diversity estimates from two mathematical methods: species co‐occurrence (SCO) and species distribution modeling (SDM). We used plant distribution data from the Atlas Florae Europaeae (50 × 50 km grid cells) and seven different European regions (10 × 10 km grid cells). Dark diversity was estimated by SCO and SDM for both datasets. We examined the relationship between the dark diversity sizes (type II regression) and the overlap in species composition (overlap coefficient). We tested the overlap probability according to the hypergeometric distribution. We combined the estimates of the two methods to determine consensus dark diversity and composite dark diversity. We tested whether dark diversity and completeness of site diversity (log ratio of observed and dark diversity) are related to various natural and anthropogenic factors differently than simple observed diversity. Both methods provided similar dark diversity sizes and distribution patterns; dark diversity is greater in southern Europe. The regression line, however, deviated from a 1:1 relationship. The species composition overlap of two methods was about 75%, which is much greater than expected by chance. Both consensus and composite dark diversity estimates showed similar distribution patterns. Both dark diversity and completeness measures exhibit relationships to natural and anthropogenic factors different than those exhibited by observed richness. In summary, dark diversity revealed new biodiversity patterns which were not evident when only observed diversity was examined. A new perspective in dark diversity studies can incorporate a combination of methods.  相似文献   

14.
This paper deals with a discussion of terminology and six proposed levels of biodiversity. Recent data and estimates were used to compare species and taxonomic diversity of terrestrial, freshwater, and marine organisms. About 1.5 million terrestrial species and 320000 aquatic species are hitherto known. In spite of a long history of research, only about 280000 marine species have been discovered, of which 180000 species are invertebrates. Of 33 metazoan phyla, 31 are found in the sea, 13 of these being exclusively marine. Seventeen metazoan phyla contain freshwater species, and only 11 phyla comprise terrestrial animals. Two phyla (freshwater Micrognathozoa and terrestrial Onychophora) possess no marine species. In this paper, we review the assessment reports on marine biological diversity in coral reefs, coastal ecosystems, macrobenthos, and meiofauna. Recent data on the number of known species are listed for each metazoan phylum; the number of anticipated new species to be discovered is estimated. Deep-sea macrobenthos are believed to comprise about 25 million species; meiofauna seems to be composed of 20 to 30 million species, ten million of whom are marine nematodes. Hypotheses are discussed that can account for the high species diversity of deep-sea macrobenthos and meiofauna.  相似文献   

15.
Understanding how global environmental change impacts insect biodiversity is central to the core principals of conservation biology. To preserve the ecosystem services provided by insects in cities, it is crucial to understand how insect species are influenced by the degree of urbanization of the surrounding landscape. Using a hierarchical occupancy–detection model, we estimated the effect of urbanization on heteropteran bug species richness and occupancy, an approach that concurrently accounts for species-specific responses and imperfect detection. We found that species richness decreased along a gradient of increasing urbanization. This trend corresponded well with species-specific trends, as approximately two-thirds of all herbivores and predatory species experienced a strong mean negative response to urbanization. These results indicate that many species are potentially at risk of local extinction as cities grow and expand in the future. A second group of species, however, showed a weak mean negative response, indicating that they are ubiquitous urban species that thrive regardless of the surrounding degree of urban disturbance. Our research suggests that as cities develop, many of the species that are currently present will become less likely to occur, and therefore assemblages in the future are likely to become more simplified. In order to preserve or increase insect biological diversity in cities, it is critical to understand how individual species are influenced by urbanization. Our finding that insects display species-specific responses to urbanization has important repercussions for decision makers charged with preserving and improving urban biodiversity and the deliverance of ecosystem services in cities.  相似文献   

16.
Agricultural intensification and loss of semi-natural grassland have contributed to biodiversity decline, including pollinator species, in pastures around the world. To reverse the decline, agri-environmental schemes have been implemented, varying widely in effectiveness. In addition, many countries, including the Netherlands, have established nature reserves in which semi-natural grasslands are restored and are often managed for specific groups of species, e.g. meadow birds or plants. The effects of such measures on insect biodiversity are not well known but recent reports on the dramatic decline of insect biomass in nature reserves have put even more attention to the impact of land use and management on biodiversity. This study compares pollinator abundance and species richness in three common semi-natural grassland management types in the Netherlands: (1) hay meadows, (2) herb-rich grasslands and (3) meadow bird grasslands. Pollinator abundance and species richness were assessed in eleven study areas, each with all three management types present. Standardized transects, insect sampling within a standard 20 min time frame and plot-based flower surveys were used in spring and summer to assess the relationships between management regime, floral abundance and diversity and pollinator communities. The results show that meadow bird grasslands have lower pollinator abundance and diversity and a less unique pollinator assemblage than both other types. Moreover, flower abundance has a positive effect on pollinator abundance and flower diversity has a positive effect on pollinator species richness. These results indicate that meadow-bird grasslands are a comparatively unfavourable habitat for bees, hoverflies and butterflies, which may be explained by a lack of flowers as well as unsuitable mowing practices. Measures benefitting both insectivorous birds and flower-visiting insects, such as rotational mowing, could remediate this imbalance.  相似文献   

17.
In a recent Forum paper, Wardle (Journal of Vegetation Science, 2016) questions the value of biodiversity–ecosystem function (BEF) experiments with respect to their implications for biodiversity changes in real world communities. The main criticism is that the previous focus of BEF experiments on random species assemblages within each level of diversity has ‘limited the understanding of how natural communities respond to biodiversity loss.’ He concludes that a broader spectrum of approaches considering both non‐random gains and losses of diversity is essential to advance this field of research. Wardle's paper is timely because of recent observations of frequent local and regional biodiversity changes across ecosystems. While we appreciate that new and complementary experimental approaches are required for advancing the field, we question criticisms regarding the validity of BEF experiments. Therefore, we respond by briefly reiterating previous arguments emphasizing the reasoning behind random species composition in BEF experiments. We describe how BEF experiments have identified important mechanisms that play a role in real world ecosystems, advancing our understanding of ecosystem responses to species gains and losses. We discuss recent examples where theory derived from BEF experiments enriched our understanding of the consequences of biodiversity changes in real world ecosystems and where comprehensive analyses and integrative modelling approaches confirmed patterns found in BEF experiments. Finally, we provide some promising directions in BEF research.  相似文献   

18.
Many insects contain diverse gut microbial communities. While several studies have focused on a single or small group of species, comparative studies of phylogenetically diverse hosts can illuminate general patterns of host–microbiota associations. In this study, we tested the hypotheses that (i) host diet and (ii) host taxonomy structure intestinal bacterial community composition among insects. We used published 16S rRNA gene sequence data for 58 insect species in addition to four beetle species sampled from the Sevilleta National Wildlife Refuge to test these hypotheses. Overall, gut bacterial species richness in these insects was low. Decaying wood xylophagous insects harboured the richest bacterial gut flora (102.8 species level operational taxonomic units (OTUs)/sample ± 71.7, 11.8 ± 5.9 phylogenetic diversity (PD)/sample), while bees and wasps harboured the least rich bacterial communities (11.0 species level OTUs/sample ± 5.4, 2.6 ± 0.8 PD/sample). We found evidence to support our hypotheses that host diet and taxonomy structure insect gut bacterial communities (P < 0.001 for both). However, while host taxonomy was important in hymenopteran and termite gut community structure, diet was an important community structuring factor particularly for insect hosts that ingest lignocellulose‐derived substances. Our analysis provides a baseline comparison of insect gut bacterial communities from which to test further hypotheses concerning proximate and ultimate causes of these associations.  相似文献   

19.
20.
Democratic Republic of the Congo (DR Congo) has a wide diversity of edible insects making it one of the most important biodiversity hot spots in Africa. The aim of this study was to give the first insight into the food plant range, seasonal availability of edible insects, community preference and willingness to consume them. The study revealed a list of eleven edible insect species belonging to four families. Twenty‐six plant species were recorded as food plants of nine edible caterpillar species. Seasonal availability of these insects coincided with the rainy season and was strongly linked to relatively high level of consumption. The caterpillars Elaphrodes lactea Gaede, Lobobunaea saturnus Fabricius and Cinabra hyperbius (Westwood) as well as the termites Macrotermes falciger Gerstäcker were the most dominant species of edible insects preferred and consumed among the different communities. Our study demonstrates that entomophagy is a common practice among the ethnic populations with married, tertiary and university‐level individuals recording significantly higher consumption of edible caterpillars. Populations between the ages of 18 and 45 years as well as the Bemba tribe were also more actively involved in entomophagy. Further research would be necessary to exploit edible insect biodiversity and ethno‐entomophagy and initiate actions for food plant conservation in DR Congo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号