首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discussion of the vertical stratification of organisms in tropical forests has traditionally focused on species distribution. Most studies have shown that, due to differences in abiotic conditions and resource distribution, species can be distributed along the vertical gradient according to their ecophysiological needs. However, the network structure between distinct vertical strata remains little-explored. To fill this gap in knowledge, we used baits to sample ants in the canopy and understorey trees of a Mexican tropical rain forest to record the ant–tree co-occurrences. We examined the ant–tree co-occurrences in the canopy and understorey using complementary network metrics (i.e., specialization, interaction diversity, modularity, and nestedness). In addition, we evaluated co-occurrence patterns between ant species on trees, using C-score analysis. In general, we found no differences in the network structure, although the interaction diversity was greater in the understorey than in the canopy networks. We also observed that co-occurrence networks of each vertical stratum featured four ant species in the central core of highly co-occurring species, with three species unique to each stratum. Moreover, we found a similar trend toward ant species segregation in the both strata. These findings reveal a similar pattern of ant–ant co-occurrences in both vertical strata, probably due to the presence of arboreal-nesting ants in the understorey. Overall, we showed that despite the marked differences in species composition and environmental conditions between understorey and canopy strata, ant–tree co-occurrences in these habitats could be governed by similar mechanisms, related to dominance and resource monopolization by ants.  相似文献   

2.
S. P. Yanoviak  M. Kaspari 《Oikos》2000,89(2):259-266
The tropical forest canopy and litter differ in physical structure, resource availability, and abiotic conditions. We used standardized bait experiments in the canopy and litter of four neotropical tree species to explore how these differences shape the behavior, morphology, and diversity of ant assemblages. Ant activity (biomass at a bait after 32 min) was higher in the canopy, and higher on protein baits than carbohydrate baits. Aggressive bait defense occurred more frequently in the canopy (60%) than in the litter (32%), but was not associated with tree species or bait type in either habitat. The median size of workers of species in the canopy and litter was nearly identical, but body size distribution was unimodal in the canopy and bimodal in the litter. The colony size of the most aggressive species was an order of magnitude larger in the canopy. Species richness at a bait was relatively uniform across tree species and habitats. Litter and canopy shared no species, but overlap among tree species was three times higher in the litter assemblages. Litter assemblages showed less activity, less interference, less differentiation across the landscape, and different size distributions than canopy assemblages. The canopy and litter templets subsume a number of environmental gradients that combine to shape ant community structure.  相似文献   

3.
In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments.  相似文献   

4.
Arboreal ants as key predators in tropical lowland rainforest trees   总被引:1,自引:0,他引:1  
Ants numerically dominate the canopy fauna of tropical lowland rain forests. They are considered to be key predators but their effects in this regard have only rarely been studied on non-myrmecophytes. A conspicuously low abundance of less mobile, mainly holometabolous arthropods like Lepidoptera larvae corresponds with ant dominance, while hemimetabolous highly mobile nymphs occur regularly and in large numbers in the trees. This is in contrast to the temperate regions where ants are mostly lacking on trees and holometabolous larvae are frequent. In this study we experimentally measured ant predation in the trees by offering caterpillars as baits. Fifty-four ant species were tested, of which 46 killed caterpillars and carried them away to their nests while only eight species ignored the offered larvae. Insecticidal knockdown fogging of ten trees after finishing the prey experiments showed that on average 85% of ant individuals per tree were predacious. With the analysis of another 69 foggings and meticulous observations in many other trees this suggests that arboreal ants are responsible for the low abundance of less mobile arthropods in tropical lowland rain forest canopies. Ant predation was significantly lower in a disturbed forest indicating that human disturbance induces a change in the functional interactions in these ecosystems.  相似文献   

5.
 以海南岛霸王岭自然保护区1 hm2老龄原始林样地的调查材料为基础,分析了热带山地雨林群落的组成、高度结构、径级结构及有关的树种多样性特征。结果表明:霸王岭热带山地雨林树种较丰富,物种多样性指数较高。树种数和树木的密度都随高度级、径级的增加而呈负指数或负幂函数递减;热带山地雨林不同高度级、不同径级和不同小样方斑块内的树种数都与树木密度呈显著的正相关关系。热带山地雨林经过自然的演替达到老龄顶极群落后,最后进入主林层的只是少部分树种的少数个体。  相似文献   

6.
In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty-five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within-sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The "last biotic frontier" for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor.  相似文献   

7.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

8.
Canopy connectivity influences foraging, movement, and competition in arboreal ant communities. Understanding how canopy connectivity affects arboreal ant communities could inform the development of management practices that maximize services from known biocontrol agents. We experimentally manipulated connectivity between the crowns of large shade trees to investigate the effects of canopy connectivity on arboreal ant species richness and composition in a coffee agroecosystem. A linear mixed-effects analysis showed that the number of species observed at baits set in tree crowns increased significantly after the crowns had been connected with nylon ropes. Crowns that were connected increased in similarity of ant species composition, particularly between adjacent connected crowns. Connectivity may increase the number of species present in tree crowns by allowing ants to move and forage in the canopy while bypassing trunks with more aggressive, territorial species such as Azteca sericeasur. Because twig-nesting species in the upper canopy have been shown to act as biocontrol agents of herbivores, an increase in species richness in tree crowns could have positive implications for agricultural pest-control services.  相似文献   

9.
Question: How do soils and topography influence Amazonian tree diversity, a region with generally nutrient‐starved soils but some of the biologically richest tree communities on Earth? Location: Central Amazonia, near Manaus, Brazil. Methods: We evaluated the influence of 14 soil and topographic features on species diversity of rain forest trees (≥10 cm diameter at breast height), using data from 63 1‐ha plots scattered over an area of ~400 km2. Results: An ordination analysis identified three major edaphic gradients: (1) flatter areas had generally higher nutrient soils (higher clay content, carbon, nitrogen, phosphorus, pH and exchangeable bases, and lower aluminium saturation) than did slopes and gullies; (2) sandier soils had lower water storage (plant available water capacity), phosphorus and nitrogen; and (3) soil pH varied among sites. Gradient 2 was the strongest predictor of tree diversity (species richness and Fisher's α values), with diversity increasing with higher soil fertility and water availability. Gradient 2 was also the best predictor of the number of rare (singleton) species, which accounted on average for over half (56%) of all species in each plot. Conclusions: Although our plots invariably supported diverse tree communities (≥225 species ha?1), the most species‐rich sites (up to 310 species ha?1) were least constrained by soil water and phosphorus availability. Intriguingly, the numbers of rare and common species were not significantly correlated in our plots, and they responded differently to major soil and topographic gradients. For unknown reasons rare species were significantly more frequent in plots with many large trees.  相似文献   

10.
Complex distribution patterns of species-rich insect communities in tropical rainforests have been intensively studied, and yet we know very little about processes that generate these patterns. We provide evidence for the key role of homopteran honeydew and plant nectar in structuring ant communities in an Australian tropical rainforest canopy and understorey. We also test the ant visitation of these resources against predictions derived from the 'ant-mosaic' hypothesis. Two ant species were highly dominant in terms of territorial behaviour and abundance: Oecophylla smaragdina and Anonychomyrma gilberti . Both dominant ant species monopolised large aggregations of honeydew-producing homopterans. Attended homopteran species were highly segregated between these two ant species. For the use of extrafloral and floral nectar (involving 43 ant species on 48 plant species), partitioning of ant species among plant species and between canopy and understorey was also significant, but less pronounced. In contrast to trophobioses, simultaneous co-occurrence of different nectar foraging ant species on the same plant individuals was frequent (23% of all surveys). While both dominant ant species were mutually exclusive on honeydew and nectar sources, co-occurrence with non-dominant ant species on nectaries was common. The proportion of visits with co-occurrences was low for dominant ants and high for many sub-ordinate species. These findings support the ant mosaic theory. The differential role of honeydew (as a specialised resource for dominant ants) and nectar (as an opportunistic resource for all ants including the co-occurring non-dominant species) provides a plausible structuring mechanism for the Australian canopy ant community studied.  相似文献   

11.
In tropical rain forests, high canopy trees have diverse and abundant populations of ants and spiders. However, accessing high trees and their fauna remains difficult; thus, how ants and spiders interact in the canopy remains unclear. To better understand the interspecific interactions between these two dominant arthropod groups, we investigated their spatial distributions at the canopy surface in a tropical rain forest in Borneo. We sampled ants and spiders six times between 2009 and 2011 by sweeping with an insect net at the tree crown surfaces of 190 emergent or tall (≥20 m in height) trees. We collected 438 ant individuals belonging to 94 species and 1850 spider individuals (1630 juveniles and 220 adults) belonging to 142 morphospecies (adults only) from a total of 976 samples. The fact that we collected four times more spider individuals than ant individuals suggests that fewer ants forage at the tree crown surface than previously thought. The number of spider individuals negatively correlated with the number of ant individuals and the number of ant species, indicating significant exclusivity between ant and spider spatial distributions at the tree crown surface. Niche‐overlap between the two taxa confirmed this observation. Although our data do not address the causes of these spatial distributions, antagonistic interspecific interactions such as interference behaviors and intra‐guild predation are ecological mechanisms that give rise to exclusive spatial distributions.  相似文献   

12.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

13.
Ant-plant interactions in the canopy of a lowland Amazonian rainforest of the upper Orinoco, Venezuela, were studied using a modified commercial crane on rails (Surumoni project). Our observations show a strong correlation between plant sap exudates and both abundance of ants and co-occurrence of ant species in tree canopies. Two types of plant sap sources were compared: extrafloral nectaries (EFNs) and honeydew secretions by homopterans. EFNs were a frequent food source for ants on epiphytes (Philodendron spp., Araceae) and lianas (Dioclea, Fabaceae), but rare on canopy trees in the study area, whereas the majority of trees were host to aggregations of homopterans tended by honeydew-seeking ants (on 62% of the trees examined). These aggregations rarely occurred on epiphytes. Baited ant traps were installed on plants with EFNs and in the crowns of trees from three common genera, including trees with and without ant-tended homopterans: Goupia glabra (Celastraceae), Vochysia spp. (Vochysiaceae), and Xylopia spp. (Annonaceae). The number of ant workers per trap was significantly higher on plants offering one of the two plant sap sources than on trees without such resources. Extrafloral nectaries were used by a much broader spectrum of ant species and genera than honeydew, and co-occurrence of ant species (in traps) was significantly higher on plants bearing EFNs than on trees. Homopteran honeydew (Coccidae and Membracidae), on the other hand, was mostly monopolised by a single ant colony per tree. Homopteran-tending ants were generally among the most dominant ants in the canopy. The most prominent genera were Azteca, Dolichoderus (both Dolichoderinae), Cephalotes, Pheidole, Crematogaster (all Myrmicinae), and Ectatomma (Ponerinae). Potential preferences were recorded between ant and homopteran species, and also between ant-homopteran associations and tree genera. We hypothesize that the high availability of homopteran honeydew provides a key resource for ant mosaics, where dominant ant colonies and species maintain mutually exclusive territories on trees. In turn, we propose that for nourishment of numerous ants of lower competitive capacity, Philodendron and other sources of EFNs might be particularly important.  相似文献   

14.
1. Physically complex substrates impart significant costs on cursorial central‐place foragers in terms of time spent outside the nest and total distance travelled. Ants foraging in trees navigate varied surfaces to access patchy resources, thus providing an appropriate model system for examining interactions between foraging efficiency and substrates. 2. We expected that the speed of recruitment, body size distribution and species richness of foraging arboreal ants would differ predictably among common substrate types occurring on tropical tree trunks. We measured changes in ant abundance and species composition over time at baits placed on bare tree bark, moss‐covered bark, and vine‐like vegetation appressed to bark. We also measured average body size and body size frequency on the three substrate types. Ants discovered baits sooner and accumulated at baits relatively faster when using vine substrates as the primary foraging trail. Average body size was smaller on vine substrates than on bark. Experimental removal of vine and moss substrates nullified these differences. Contrary to our predictions, species richness and body size distributions did not differ among the three substrate types, due in part to the frequent presence of a few common ground‐nesting species at baits on bare bark. 3. Our results collectively indicate that linear substrates facilitate access of foraging ants to patchy resources. Ant use of vine‐like substrates appears to be opportunistic; vine use is not confined to certain species nor constrained by body size.  相似文献   

15.
Invasional 'meltdown' on an oceanic island   总被引:11,自引:0,他引:11  
Islands can serve as model systems for understanding how biological invasions affect community structure and ecosystem function. Here we show invasion by the alien crazy ant Anoplolepis gracilipes causes a rapid, catastrophic shift in the rain forest ecosystem of a tropical oceanic island, affecting at least three trophic levels. In invaded areas, crazy ants extirpate the red land crab, the dominant endemic consumer on the forest floor. In doing so, crazy ants indirectly release seedling recruitment, enhance species richness of seedlings, and slow litter breakdown. In the forest canopy, new associations between this invasive ant and honeydew‐secreting scale insects accelerate and diversify impacts. Sustained high densities of foraging ants on canopy trees result in high population densities of host‐generalist scale insects and growth of sooty moulds, leading to canopy dieback and even deaths of canopy trees. The indirect fallout from the displacement of a native ‘keystone’ species by an ant invader, itself abetted by introduced/cryptogenic mutualists, produces synergism in impacts to precipitate invasional ‘meltdown’ in this system.  相似文献   

16.

Aim

Many studies demonstrate that climate limits invertebrates along tropical elevational gradients, but we have only a rudimentary understanding of the role of nutrient limitation and climatic seasonality. Here we examined the relationships between ant community structure, nutrient use and season along three undisturbed elevational gradients, each from a different continent.

Location

Ecuador (South America), Papua New Guinea (PNG: Oceania), Tanzania (Africa).

Time period

2011–2014.

Major taxa studied

Ants.

Methods

Along each of the three gradients, we placed six distinct nutrient types (amino acid, sucrose, sucrose + amino acid, lipid, NaCl, H2O). In total, we distributed 2370 baits at 38 sites from 203 m to 3972 m. We used generalized linear models to test for the effects of elevation and season on ant species richness and activity and relative nutrient use. We also tested if changes in ant trophic guilds corresponded to changes in the use of particular nutrients.

Results

Both species richness and activity decreased with elevation along each gradient. However, there were significant interaction effects among elevation, region and season, as ant activity in the dry season was higher in Ecuador and Tanzania but lower in PNG. Relative nutrient use varied among regions: ant preference for some nutrients changed with increasing elevation in Ecuador (decrease in lipid use) and Tanzania (decrease in amino acid and H2O use), while season affected nutrient use in PNG. There were common trends in trophic guilds along the three elevational gradients (e.g. proportional increase of predators), but these did not explain most of the nutrient use patterns.

Main conclusion

While the structure of ant communities changed similarly with elevation, both the seasonal and elevational effects on nutrient use by ants differed between continents. We argue that regional differences in climate and nutrient availability rather than ant functional composition shape nutrient use by ants.  相似文献   

17.
It has been argued that canopy trees in tropical rainforests harbor species-rich ant assemblages; however, how ants partition the space on trees has not been adequately elucidated. Therefore, we investigated within-tree distributions of nest sites and foraging areas of individual ant colonies on canopy trees in a tropical lowland rainforest in Southeast Asia. The species diversity and colony abundance of ants were both significantly greater in crowns than on trunks. The concentration of ant species and colonies in the tree crown seemed to be associated with greater variation in nest cavity type in the crown, compared to the trunk. For ants nesting on canopy trees, the numbers of colonies and species were both higher for ants foraging only during the daytime than for those foraging at night. Similarly, for ants foraging on canopy trees, both values were higher for ants foraging only during the daytime than for those foraging at night. For most ant colonies nesting on canopy trees, foraging areas were limited to nearby nests and within the same type of microhabitat (within-tree position). All ants foraging on canopy trees in the daytime nested on canopy trees, whereas some ants foraging on the canopy trees at night nested on the ground. These results suggest that spatial partitioning by ant assemblages on canopy trees in tropical rainforests is affected by microenvironmental heterogeneity generated by three-dimensional structures (e.g., trees, epiphytes, lianas, and aerial soils) in the crowns of canopy trees. Furthermore, ant diversity appears to be enriched by both temporal (diel) and fine-scale spatial partitioning of foraging activity.  相似文献   

18.
Ants are key indicators of ecological change, but few studies have investigated how ant assemblages respond to dramatic changes in vegetation structure in temperate forests. Pests and pathogens are causing widespread loss of dominant canopy tree species; ant species composition and abundance may be very sensitive to such losses. Before the experimental removal of red oak trees to simulate effects of sudden oak death and examine the long-term impact of oak loss at the Black Rock Forest (Cornwall, NY), we carried out a rapid assessment of the ant assemblage in a 10-ha experimental area. We also determined the efficacy in a northern temperate forest of five different collecting methods--pitfall traps, litter samples, tuna fish and cookie baits, and hand collection--routinely used to sample ants in tropical systems. A total of 33 species in 14 genera were collected and identified; the myrmecines, Aphaenogaster rudis and Myrmica punctiventris, and the formicine Formica neogagates were the most common and abundant species encountered. Ninety-four percent (31 of 33) of the species were collected by litter sampling and structured hand sampling together, and we conclude that, in combination, these two methods are sufficient to assess species richness and composition of ant assemblages in northern temperate forests. Using new, unbiased estimators, we project that 38-58 ant species are likely to occur at Black Rock Forest. Loss of oak from these forests may favor Camponotus species that nest in decomposing wood and open habitat specialists in the genus Lasius.  相似文献   

19.
The ant mosaic is a concept of the non-random spatial distribution of individual ant species in trees built upon the assumption of interspecific behavioural associations. However, colony identity and environmental variance may also play a role in species distribution. Here we assess the presence of ant mosaics in a primary forest ecosystem and whether they are structured by species' aggressive behaviours or by habitat filtering. We sampled arboreal ants from vertically stratified baits exposed in 225 canopy trees in a 9-ha plot of primary lowland forest in Papua New Guinea, the largest forest area surveyed to detect ant mosaics. We performed behavioural tests on conspecific ants from adjacent trees to determine the territories of individual colonies. We explored the environmental effects on the ant communities using information on the plot vegetation structure and topography. Furthermore, we created a novel statistical method to test for the community non-random spatial structure across the plot via spatial randomisation of individual colony territories. Finally, we linked spatial segregation among the four most common species to experimentally assessed rates of interspecies aggression. The ant communities comprised 57 species of highly variable abundance and vertical stratification. Ant community composition was spatially dependent, but it was not affected by tree species composition or canopy connectivity. Only local elevation had a significant but rather small effect. Individual colony territories ranged from one tree to 0.7 ha. Species were significantly over-dispersed, with their territory overlap significantly reduced. The level of aggression between pairs of the four most common species was positively correlated with their spatial segregation. Our study demonstrates the presence of ant mosaics in tropical pristine forest, which are maintained by interspecific aggression rather than habitat filtering, with vegetation structure having a rather small and indirect effect, probably linked to microclimate variability.  相似文献   

20.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号