首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.  相似文献   

2.
For the long run: maintaining germinal niches in the adult brain   总被引:43,自引:0,他引:43  
Alvarez-Buylla A  Lim DA 《Neuron》2004,41(5):683-686
The adult mammalian brain retains neural stem cells that continually generate new neurons within two restricted regions: the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus subgranular zone (SGZ) of the hippocampus. Though these cellular populations are spatially isolated and subserve different brain systems, common themes begin to define adult neurogenic niches: (1) astrocytes serve as both stem cell and niche cell, (2) a basal lamina and concomitant vasculogenesis may be essential components of the niche, and (3) "embryonic" molecular morphogens and signals persist in these niches and play critical roles for adult neurogenesis. The adult neurogenic niches can be viewed as "displaced" neuroepithelium, pockets of cells and local signals that preserve enough embryonic character to maintain neurogenesis for life.  相似文献   

3.
Neural stem cells (NSCs) in the postnatal mammalian brain self-renew and are a source of neurons and glia. To date, little is known about the molecular and cellular mechanisms regulating the maintenance and differentiation of these multipotent progenitors. We show that Jagged1 is required by mitotic cells in the subventricular zone (SVZ) and stimulates self-renewal of multipotent epidermal growth factor-dependent NSCs. Jagged1-expressing cells line the adult SVZ and are juxtaposed to Notch1-expressing cells, some of which are putative NSCs. In vitro, endogenous Jagged1 acts through Notch1 to promote NSC maintenance and multipotency. In vivo, reducing Jagged1/Notch1 signaling decreases the number of proliferating cells in the SVZ. In addition, soluble Jagged1 promotes self-renewal and neurogenic potential of multipotent neural progenitors in vitro. Our findings suggest a central role for Jagged1 in the NSC niche in the SVZ for maintaining a population of NSCs in the postnatal brain.  相似文献   

4.
Adult neural stem cells bridge their niche   总被引:1,自引:0,他引:1  
Major developments in the neural stem cell (NSC) field in recent years provide new insights into the nature of the NSC niche. In this perspective, we integrate recent anatomical data on the organization of the two main neurogenic niches in the adult brain, the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), with signaling pathways that control the behavior of NSCs. NSCs in the adult brain stretch into physiologically distinct compartments of their niche. We propose how adult NSCs' morphology may allow these cells to integrate multiple signaling pathways arising from unique locations of their niche.  相似文献   

5.
Neural stem cells (NSCs) reside in a unique microenvironment called the neurogenic niche and generate functional new neurons. The neurogenic niche contains several distinct types of cells and interacts with the NSCs in the subventricular zone (SVZ) of the lateral ventricle. While several molecules produced by the niche cells have been identified to regulate adult neurogenesis, a systematic profiling of autocrine/paracrine signaling molecules in the neurogenic regions involved in maintenance, self-renewal, proliferation, and differentiation of NSCs has not been done. We took advantage of the genetic inducible fate mapping system (GIFM) and transgenic mice to isolate the SVZ niche cells including NSCs, transit-amplifying progenitors (TAPs), astrocytes, ependymal cells, and vascular endothelial cells. From the isolated cells and microdissected choroid plexus, we obtained the secretory molecule expression profiling (SMEP) of each cell type using the Signal Sequence Trap method. We identified a total of 151 genes encoding secretory or membrane proteins. In addition, we obtained the potential SMEP of NSCs using cDNA microarray technology. Through the combination of multiple screening approaches, we identified a number of candidate genes with a potential relevance for regulating the NSC behaviors, which provide new insight into the nature of neurogenic niche signals.  相似文献   

6.
An important mechanism of neuronal plasticity is neurogenesis, which occurs during the embryonic period, forming the brain and its structure, and in the postnatal period, providing repair processes and participating in the mechanisms of memory consolidation. Adult neurogenesis in mammals, including humans, is limited in two specific brain areas, the lateral walls of the lateral ventricles (subventricular zone) and the granular layer of the dentate gyrus of the hippocampus (subgranular zone). Neural stem cells (NSC), self-renewing, multipotent progenitor cells, are formed in these zones. Neural stem cells are capable of differentiating into the basic cell types of the nervous system. In addition, NSC may have neurogenic features and non-specific non-neurogenic functions aimed at maintaining the homeostasis of the brain. The microenvironment formed in neurogenic niches has importance maintaining populations of NSC and regulating differentiation into neural or glial cells via cell-to-cell interactions and microenvironmental signals. The vascular microenvironment in neurogenic niches are integrated by signaling molecules secreted from endothelial cells in the blood vessels of the brain or by direct contact with these cells. Accumulation of astrocytes in neurogenic niches if also of importance and leads to activation of neurogenesis. Dysregulation of neurogenesis contributes to the formation of neurological deficits observed in neurodegenerative diseases. Targeting regulation of neurogenesis could be the basis of new protocols of neuroregeneration.  相似文献   

7.
Neural stem cells are retained in the postnatal subventricular zone (SVZ), a specialized neurogenic niche with unique cytoarchitecture and cell-cell contacts. Although the SVZ stem cells continuously regenerate, how they and the niche respond to local changes is unclear. Here we generated nestin-creER(tm) transgenic mice with inducible Cre recombinase in the SVZ and removed Numb/Numblike, key regulators of embryonic neurogenesis from postnatal SVZ progenitors and ependymal cells. This resulted in severe damage to brain lateral ventricle integrity and identified roles for Numb/Numblike in regulating ependymal wall integrity and SVZ neuroblast survival. Surprisingly, the ventricular damage was eventually repaired: SVZ reconstitution and ventricular wall remodeling were mediated by progenitors that escaped Numb deletion. Our results show a self-repair mechanism in the mammalian brain and may have implications for both niche plasticity in other areas of stem cell biology and the therapeutic use of neural stem cells in neurodegenerative diseases.  相似文献   

8.
Neural stem cells (NSCs, B1 cells) are retained in the walls of the adult lateral ventricles but, unlike embryonic NSCs, are displaced from the ventricular zone (VZ) into the subventricular zone (SVZ) by ependymal cells. Apical and basal compartments, which in embryonic NSCs play essential roles in self-renewal and differentiation, are not evident in adult NSCs. Here we show that SVZ B1 cells in adult mice extend a minute apical ending to directly contact the ventricle and a long basal process ending on blood vessels. A closer look at the ventricular surface reveals a striking pinwheel organization specific to regions of adult neurogenesis. The pinwheel's core contains the apical endings of B1 cells and in its periphery two types of ependymal cells: multiciliated (E1) and a type (E2) characterized by only two cilia and extraordinarily complex basal bodies. These results reveal that adult NSCs retain fundamental epithelial properties, including apical and basal compartmentalization, significantly reshaping our understanding of this adult neurogenic niche.  相似文献   

9.
10.
Chromosome integrity is essential for cell viability and, therefore, highly proliferative cell types require active telomere elongation mechanisms to grow indefinitely. Consistently, deletion of telomerase activity in a genetically modified mouse strain results in growth impairments in all highly proliferative cell populations analyzed so far. We show that telomere attrition dramatically impairs the in vitro proliferation of adult neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of telomerase-deficient adult mice. Reduced proliferation of postnatal neurogenic progenitors was also observed in vivo, in the absence of exogenous mitogenic stimulation. Strikingly, severe telomere erosion resulting in chromosomal abnormalities and nuclear accumulation of p53 did not affect the in vitro proliferative potential of embryonic NSCs. These results suggest that intrinsic differences exist between embryonic and adult neural progenitor cells in their response to telomere shortening, and that some populations of tissue-specific stem cells can bypass DNA damage check points.  相似文献   

11.
12.
The RNA‐binding protein Musashi1 (Msi1) is one of two mammalian homologues of DrosophilaMusashi, which is required for the asymmetric cell division of sensory organ precursor cells. In the mouse central nervous system (CNS), Msi1 is preferentially expressed in mitotically active progenitor cells in the ventricular zone (VZ) of the neural tube during embryonic development and in the subventricular zone (SVZ) of the postnatal brain. Previous studies showed that cells in the SVZ can contribute to long‐term neurogenesis in the olfactory bulb (OB), but it remains unclear whether Msi1‐expressing cells have self‐renewing potential and can contribute to neurogenesis in the adult. Here, we describe the generation of Msi1‐CreERT2 knock‐in mice and show by cell lineage tracing that Msi1‐CreERT2‐expressing cells mark neural stem cells (NSCs) in both the embryonic and adult brain. Msi1‐CreERT2 mice thus represent a new tool in our arsenal for genetically manipulating NSCs, which will be essential for understanding the molecular mechanisms underlying neural development. genesis, 51:128–134, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Neurogenesis involves generation of functional newborn neurons from neural stem cells (NSCs). Insufficient formation or accelerated degeneration of newborn neurons may contribute to the severity of motor/nonmotor symptoms of Parkinson’s disease (PD). However, the functional role of adult neurogenesis in PD is yet not explored and whether glycogen synthase kinase-3β (GSK-3β) affects multiple steps of adult neurogenesis in PD is still unknown. We investigated the possible underlying molecular mechanism of impaired adult neurogenesis associated with PD. Herein, we show that single intra-medial forebrain bundle (MFB) injection of 6-hydroxydopamine (6-OHDA) efficiently induced long-term activation of GSK-3β and reduced NSC self-renewal, proliferation, neuronal migration, and neuronal differentiation accompanied with increased astrogenesis in subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Indeed, 6-OHDA also delayed maturation of neuroblasts in the DG as witnessed by their reduced dendritic length and arborization. Using a pharmacological approach to inhibit GSK-3β activation by specific inhibitor SB216763, we show that GSK-3β inhibition enhances radial glial cells, NSC proliferation, self-renewal in the SVZ, and the subgranular zone (SGZ) in the rat PD model. Pharmacological inhibition of GSK-3β activity enhances neuroblast population in SVZ and SGZ and promotes migration of neuroblasts towards the rostral migratory stream and lesioned striatum from dorsal SVZ and lateral SVZ, respectively, in PD model. GSK-3β inhibition enhances dendritic arborization and survival of granular neurons and stimulates NSC differentiation towards the neuronal phenotype in DG of PD model. The aforementioned effects of GSK-3β involve a crosstalk between Wnt/β-catenin and Notch signaling pathways that are known to regulate NSC dynamics.  相似文献   

14.
Secreted proteoglycan molecule Tsukushi (TSK) regulates various developmental processes, such as early body patterning and neural plate formation by interacting with major signaling pathways like Wnt, BMP, Notch etc. In central nervous system, TSK inhibits Wnt signaling to control chick retinal development. It also plays important roles for axon guidance and anterior commissure formation in mouse brain. In the present study, we investigated the role of TSK for the development and proper functioning of mouse hippocampus. We found that TSK expression is prominent at hippocampal regions of early postnatal mouse until postnatal day 15 and gradually declines at later stages. Hippocampal dimensions are affected in TSK knockout mice (TSK-KO) as shown by reduced size of hippocampus and dentate gyrus (DG). Interestingly, neural stem cell (NSC) density at the neural niche of DG was higher in TSK-KO compared with wild-type. The ratio of proliferating NSCs as well as the rate of overall cell proliferation was also higher in TSK-KO hippocampus. Our in vitro study also suggests an increased number of neural stem/progenitor cells residing in TSK-KO hippocampus. Finally, we found that the terminal differentiation of NSCs in TSK-KO was disturbed as the differentiation to neuronal cell lineage was increased while the percentages of astrocytes and oligodendrocytes were decreased. Overall, our study establishes the involvement of TSK in hippocampal development, NSC maintenance and terminal differentiation at perinatal stages.  相似文献   

15.
Neural stem cells (NSCs) line the postnatal lateral ventricles and give rise to multiple cell types which include neurons, astrocytes, and ependymal cells1. Understanding the molecular pathways responsible for NSC self-renewal, commitment, and differentiation is critical for harnessing their unique potential to repair the brain and better understand central nervous system disorders. Previous methods for the manipulation of mammalian systems required the time consuming and expensive endeavor of genetic engineering at the whole animal level2. Thus, the vast majority of studies have explored the functions of NSC molecules in vitro or in invertebrates.Here, we demonstrate the simple and rapid technique to manipulate neonatal NPCs that is referred to as neonatal subventricular zone (SVZ) electroporation. Similar techniques were developed a decade ago to study embryonic NSCs and have aided studies on cortical development3,4 . More recently this was applied to study the postnatal rodent forebrain5-7. This technique results in robust labeling of SVZ NSCs and their progeny. Thus, postnatal SVZ electroporation provides a cost and time effective alternative for mammalian NSC genetic engineering.  相似文献   

16.
A specialized vascular niche for adult neural stem cells   总被引:5,自引:0,他引:5  
Stem cells reside in specialized niches that regulate their self-renewal and differentiation. The vasculature is emerging as an important component of stem cell niches. Here, we show that the adult subventricular zone (SVZ) neural stem cell niche contains an extensive planar vascular plexus that has specialized properties. Dividing stem cells and their transit-amplifying progeny are tightly apposed to SVZ blood vessels both during homeostasis and regeneration. They frequently contact the vasculature at sites that lack astrocyte endfeet and pericyte coverage, a modification of the blood-brain barrier unique to the SVZ. Moreover, regeneration often occurs at these sites. Finally, we find that circulating small molecules in the blood enter the SVZ. Thus, the vasculature is a key component of the adult SVZ neural stem cell niche, with SVZ stem cells and transit-amplifying cells uniquely poised to receive spatial cues and regulatory signals from diverse elements of the vascular system.  相似文献   

17.
The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.  相似文献   

18.
19.

Background

Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis.

Methodology/Principal Findings

2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively.

Conclusions/Significance

The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits.  相似文献   

20.
Neurons arise in the adult forebrain subventricular zone (SVZ) from Type B neural stem cells (NSCs), raising considerable interest in the molecules that maintain this life-long neurogenic niche. Type B cells are anchored by specialized apical endfeet in the center of a pinwheel of ependymal cells. Here we show that the apical endfeet express high levels of the adhesion and signaling molecule vascular cell adhesion molecule-1 (VCAM1). Disruption of VCAM1 in vivo causes loss of the pinwheels, disrupted SVZ cytoarchitecture, proliferation and depletion of the normally quiescent apical Type B cells, and increased neurogenesis in the olfactory bulb, demonstrating a key role in niche structure and function. We show that VCAM1 signals via NOX2 production of reactive oxygen species (ROS) to maintain NSCs. VCAM1 on Type B cells is increased by IL-1β, demonstrating that it can act as an environmental sensor, responding to chemokines involved in tissue repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号