首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
It is becoming increasingly clear that most, if not all, animals and plants are associated with a diverse array of resident gut microbiota. This symbiosis is regulated by host‐microbiome interactions which influence the development, homeostasis, adaptation and evolution of the host. Recent evidence indicated that these interactions can also affect the host germline and have a potential of supporting transgenerational effects, including inheritance of acquired characteristics. Taken together, the influence of gut bacteria on the host soma and germline could potentially give rise to emergent phenotypes, which may be partially inherited by three distinguishable modes of transgenerational influence of gut bacteria: 1) “soma‐to‐soma” 2) “soma‐to‐germline” and 3) “soma‐germline‐soma”. Here, we discuss these possibilities in light of evidence supporting bacterial‐mediated modes of transgenerational inheritance.
  相似文献   

2.
Summary The inheritance of both the mitochondrial DNA (mtDNA) and the nuclear-encoded extrachromosomal ribosomal DNA (rDNA) has been studied in the myxomycete, Didymium iridis, by DNA-DNA hybridization of labeled probes to total DNA at various stage of the life cycle. Both the mtDNA and rDNA populations rapidly become homogeneous in individuals, but there is a qualitative difference in the patterns of inheritance of these two molecules. One parental rDNA type was preferentially inherited in all crosses; selective replication of this molecule is tentatively proposed as the mechanism of inheritance. In contrast, either parental mtDNA type could be inherited. Since the inherited population of parental mtDNA molecules are not partitioned into cells in this coenocytic organism, no known mechanism of inheritance can explain the rapid and apparently random loss of one parental mtDNA type in individuals.  相似文献   

3.
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.  相似文献   

4.
胡新生 《遗传学报》2000,27(5):440-448
将已知用于从地理空间上离散或连续分布群体随机抽取基因样本的基因家系谱理论推广到两性异交植物上。由于存在不同的群体间基因多率,地3种不同遗传方式的植物基因组(核、叶绿体和线粒体DNA)分别进行了研究。理论上证明对于不同遗传方式的基因,通过相应调整有效群体大小和迁移率,现有的基因家系谱理论可直接应用于植物群体上,其中一个结论就是当从离散分布群体中随机抽取n个基因样本时,亚群体间的花粉流和种子流的相对比  相似文献   

5.
6.
Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.  相似文献   

7.
Recent work on inheritance systems can be divided into inclusive conceptions, according to which genetic and non-genetic inheritance are both involved in the development and transmission of nearly all animal behavioral traits, and more demanding conceptions of what it takes for non-genetic resources involved in development to qualify as a distinct inheritance system. It might be thought that, if a more stringent conception is adopted, homologies could not subsist across two distinct inheritance systems. Indeed, it is commonly assumed that homology relations cannot survive a shift between genetic and cultural inheritance systems, and substantial reliance has been placed on that assumption in debates over the phylogenetic origins of hominin behavioral traits, such as male-initiated intergroup aggression. However, in the homology literature it is widely accepted that a trait can be homologous—that is, inherited continuously in two different lineages from a single common ancestor—despite divergence in the mechanisms involved in the trait’s development in the two lineages. In this paper, we argue that even on an extremely stringent understanding of what it takes for developmental resources to form a separate inheritance system, homologies can nonetheless subsist across shifts between distinct inheritance systems. We argue that this result is a merit of this way of characterizing what it is to be an inheritance system, that it has implications for adjudicating between alternative accounts of homology, and that it offers an important cautionary lesson about how (not) to reason with the homology concept, particularly in the context of cultural species.  相似文献   

8.
L Eaves 《Heredity》1976,37(1):41-57
Cultural transmission may depend on the non-genetic transfer of information from parent to offspring. The consequences of such cultural transmission for continuous variation are investigated theoretically for randomly mating populations. Cultural inheritance may act on genetical and environmental differences between individuals. The consequences for cultural inheritance of polygenic variation and variation due to chance environmental factors are considered. An equilibrium may occur in which the population variance and the covariances between relatives can be expressed as functions of estimable parameters of genetical and environmental variation. Whatever the ultimate origin of culturally inherited differences they are expected to lead to environmental differences between families ("E2" variation). In addition, if cultural transmission maintains differences due ultimately to segregation at many gene loci we may find genotype-environmental covariation is generated.  相似文献   

9.
Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length.  相似文献   

10.
11.
Reproductive division of labor is a hallmark of social insect societies where individuals follow different developmental pathways resulting in distinct morphological castes. There has been a long controversy over the factors determining caste fate of individuals in social insects. Increasing evidence in the last two decades for heritable influences on division of labor put an end to the assumption that social insect broods are fully totipotent and environmental factors alone determine castes. Nevertheless, the genes that underlie hereditary effects on division of labor have not been identified in any social insects. Studies investigating the hereditary effects on caste determination might have overlooked non-genetic inheritance, while transmission to offspring of factors other than DNA sequences including epigenetic states can also affect offspring phenotype. Genomic imprinting is one of the most informative paradigms for understanding the consequences of interactions between the genome and the epigenome. Recent studies of genomic imprinting show that genes can be differentially marked in egg and sperm and inheritance of these epigenetic marks cause genes to be expressed in a parental-origin-specific manner in the offspring. By reviewing both the eusocial Hymenoptera and termites, I highlight the current theoretical and empirical evidence for genomic imprinting in eusocial insects and discuss how genomic imprinting acts in caste determination and social behavior and challenges for future studies. I also introduce the new idea that genomic imprinting plays an essential role in the origin of eusociality.  相似文献   

12.
Summary With the goal of studying directly the inheritance and recombination of physically mapped markers on the chloroplast genome, we have recently identified and localized physical differences between the chloroplast DNAs (cpDNAs) of the interfertile algae Chlamydomonas eugametos and C. moewusii. Here we report the inheritance patterns of 24 polymorphic loci mapping throughout the chloroplast genome in hybrids recovered from reciprocal crosses between the two algae. Most polymorphic loci were found to be inherited mainly from the mt + parent, with no apparent preference for one or the other parental alternatives in reciprocal crosses. Virtually all hybrids, however, inherited exclusively the long alleles of three loci; i.e. an intron in the large subunit ribosomal RNA gene of C. eugametos, a 21 kbp sequence addition in the inverted repeat of the C. moewusii cpDNA and a 5.8 kbp sequence addition in one of the single-copy regions of C. moewusii cpDNA. As these alleles are derived from opposite parental strains, their unidirectional inheritance in hybrids results necessarily from interspecific recombination of cpDNA molecules. We propose that gene conversion events led to the spreading of the long alleles of the three loci.  相似文献   

13.
Nadia Primc 《Bioethics》2020,34(1):41-48
The human genome is commonly regarded as a ‘natural’ connection between all human beings, as it has been handed down to us by our predecessors. As such, it is believed to represent common heritage of humanity, e.g. a resource of outstanding value that should be the object of special protection and international concern. Some critics argue that germline manipulation would disrupt this natural heritage and that we have a duty to preserve the integrity of the human germline. However, a closer look reveals that the concept of common heritage of humanity does not necessarily imply the impermissibility of germline manipulation. If it is restricted to the prevention of severe diseases, germline manipulation does not represent a threat to the unity and identity of the human species, even though this would create a new form of relationship between human beings, namely that between a designer and a genetically designed person.  相似文献   

14.
DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance.DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.  相似文献   

15.
Hereditary cancer syndromes caused by germline mutations give rise to distinct spectra of cancers with characteristic clinico-pathological features. Many of these hereditary cancer genes are silenced by methylation in a similar spectrum of sporadic cancers. It is likely that the initiating event in some of those cases of sporadic cancer is the somatic epigenetic inactivation (epimutation) of the same hereditary cancer gene. Recently, it has been shown that epimutations of certain hereditary cancer genes can be constitutional i.e. present throughout the soma. These epimutations may be inherited or arise very early in the germline. The heritability of these epimutations is very low as in most cases they are erased by passage through the germline. In other cases, predisposition to epimutations rather than the epimutations themselves can be inherited. These cases are characterised by Mendelian inheritance and are likely to be associated with sequence variants. Other sequence variants and environmental influences may also affect methylation propensity at a global level.  相似文献   

16.
Cytoplasmic organelles are inherited in a nonMendelian fashion in all eukaryotic organisms investigated. Among the seed plants, plastids can be inherited strictly from the female parent, strictly from the male parent, or biparentally. Most flowering plants studied to date exhibit maternal plastid inheritance, but approximately one-third of the genera investigated display biparental plastid inheritance to some degree. Among the gymnosperms, paternal plastid inheritance is the rule in the conifers, whereas the other groups appear to have maternal plastid inheritance, although they have been less well studied. Mitochondrial inheritance is predominantly maternal in the seed plants, except for a few coniferous families where it is predominantly paternal. The advent of recombinant DNA technology has allowed restriction fragment length polymorphisms to be used as molecular markers, and has stimulated much research in organelle inheritance and its application to studies of population genetics and phylogenetic biology. This report emphasizes the various mechanisms by which organelles are, or are not, transmitted among the seed plants in order that researchers directly or indirectly involved with organelle inheritance may better understand the potential and the limitations of their investigations. A summary and discussion of the possible evolutionary significance of the various patterns of cytoplasmic inheritance among the seed plants are also included.  相似文献   

17.
《Animal behaviour》1988,36(4):1025-1037
In many species of cercopithecines a female inherits her mother's (or genealogical) rank. Matrilineal rank inheritance may be defined in general terms as the process whereby a female (termed ‘dependent’) acquires the rank of an ‘ally’ above another female (‘target’). An attempt was made to reproduce this process in time-lapse form in a group of 17 Japanese macaques, Macaca fuscata, comprised of three families with similar age-sex compositions. Experimental female subgroups were formed such that in each of them a female (dependent) was given more alliance power than a dominant target. The results indicate that in each of the subgroups that was tested the dependent female inherited the rank of her ally (mother or older sister) above same-age or older targets. Four processes of rank inheritance were observed. The fact that females who were given more alliance power did not solicit their ally, or challenge the target females, before they were aided by their ally suggests that aggressive interventions are the primary mechanism of rank inheritance. The results also account for the reported rarity of aggressive interventions in natural groups and for the observation that orphans may nevertheless inherit the rank of their family. The role and dynamics of the recognition of alliances in the establishment of rank relationships are discussed.  相似文献   

18.
19.
Sexual reproduction allows transposable elements (TEs) to proliferate, leading to rapid divergence between populations and species. A significant outcome of divergence in the TE landscape is evident in hybrid dysgenic syndromes, a strong form of genomic incompatibility that can arise when (TE) family abundance differs between two parents. When TEs inherited from the father are absent in the mother''s genome, TEs can become activated in the progeny, causing germline damage and sterility. Studies in Drosophila indicate that dysgenesis can occur when TEs inherited paternally are not matched with a pool of corresponding TE silencing PIWI-interacting RNAs (piRNAs) provisioned by the female germline. Using the D. virilis syndrome of hybrid dysgenesis as a model, we characterize the effects that divergence in TE profile between parents has on offspring. Overall, we show that divergence in the TE landscape is associated with persisting differences in germline TE expression when comparing genetically identical females of reciprocal crosses and these differences are transmitted to the next generation. Moreover, chronic and persisting TE expression coincides with increased levels of genic piRNAs associated with reduced gene expression. Combined with these effects, we further demonstrate that gene expression is idiosyncratically influenced by differences in the genic piRNA profile of the parents that arise though polymorphic TE insertions. Overall, these results support a model in which early germline events in dysgenesis establish a chronic, stable state of both TE and gene expression in the germline that is maintained through adulthood and transmitted to the next generation. This work demonstrates that divergence in the TE profile is associated with diverse piRNA-mediated transgenerational effects on gene expression within populations.  相似文献   

20.
Doubly uniparental inheritance (DUI) is a mode of inheriting mitochondrial DNA that is distinct from strictly maternal inheritance. It has been described in nine and three families of marine and freshwater mussels, respectively, including the European margaritiferids and unionids. Among the 16 freshwater species of Unionida inhabiting Europe, DUI has been described in 9 species of dioecious mussels and was absent from a single hermaphroditic species and from secondary hermaphroditic specimens. The DUI freshwater mussels include two vastly genetically different mitochondrial genomes: maternal (F genome) and paternal (M genome), which coexist within the same specimen but in different tissues. The F genome is present in all female tissues and somatic male tissues. It is inherited in the typical, maternal, manner. Conversely, the M genome is located primarily in the male gonads and generative cells, and is inherited paternally. Dioecious Unionidae display unique characteristics that have been interrelated for over 200 million years: a high fidelity of the transmission of the F and M genomes in DUI and two paths of spermatogenesis–the typical path that produces sperm cells containing mitochondria with the F genome and the atypical path that produces sperm cells with the M genome. The mitogenomes of freshwater mussels display unique features that are not present in any other animal, that is, an additional, gender-specific gene and an elongated cox2 gene occurring exclusively in the M genome. These features mean that the mitochondria, in addition to their basic function of producing energy, also may take part in determining sex in these dioecious organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号