首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Huang X  Liu L 《Biometrics》2007,63(2):389-397
Therapy for patients with a recurrent disease focuses on delaying disease recurrence and prolonging survival. A common analysis approach for such data is to estimate the distribution of disease-free survival, that is, the time to the first disease recurrence or death, whichever happens first. However, treating death similarly as disease recurrence may give misleading results. Also considering only the first recurrence and ignoring subsequent ones can result in loss of statistical power. We use a joint frailty model to simultaneously analyze disease recurrences and survival. Separate parameters for disease recurrence and survival are used in the joint model to distinguish treatment effects on these two types of events. The correlation between disease recurrences and survival is taken into account by a shared frailty. The effect of disease recurrence on survival can also be estimated by this model. The EM algorithm is used to fit the model, with Markov chain Monte Carlo simulations in the E-steps. The method is evaluated by simulation studies and illustrated through a study of patients with heart failure. Sensitivity analysis for the parametric assumption of the frailty distribution is assessed by simulations.  相似文献   

2.
Recurrent event data are commonly encountered in biomedical studies. In many situations, they are subject to an informative terminal event, for example, death. Joint modeling of recurrent and terminal events has attracted substantial recent research interests. On the other hand, there may exist a large number of covariates in such data. How to conduct variable selection for joint frailty proportional hazards models has become a challenge in practical data analysis. We tackle this issue on the basis of the “minimum approximated information criterion” method. The proposed method can be conveniently implemented in SAS Proc NLMIXED for commonly used frailty distributions. Its finite-sample behavior is evaluated through simulation studies. We apply the proposed method to model recurrent opportunistic diseases in the presence of death in an AIDS study.  相似文献   

3.
4.
Mixture cure models have been utilized to analyze survival data with possible cure. This paper considers the inclusion of frailty into the mixture cure model to model recurrent event data with a cure fraction. An attractive feature of the proposed model is the allowance for heterogeneity in risk among those individuals experiencing the event of interest in addition to the incorporation of a cured component. Maximum likelihood estimates can be obtained using the Expectation Maximization algorithm and standard errors are calculated from the Bootstrap method. The model is applied to hospital readmission data among colorectal cancer patients.  相似文献   

5.
Clustered data frequently arise in biomedical studies, where observations, or subunits, measured within a cluster are associated. The cluster size is said to be informative, if the outcome variable is associated with the number of subunits in a cluster. In most existing work, the informative cluster size issue is handled by marginal approaches based on within-cluster resampling, or cluster-weighted generalized estimating equations. Although these approaches yield consistent estimation of the marginal models, they do not allow estimation of within-cluster associations and are generally inefficient. In this paper, we propose a semiparametric joint model for clustered interval-censored event time data with informative cluster size. We use a random effect to account for the association among event times of the same cluster as well as the association between event times and the cluster size. For estimation, we propose a sieve maximum likelihood approach and devise a computationally-efficient expectation-maximization algorithm for implementation. The estimators are shown to be strongly consistent, with the Euclidean components being asymptotically normal and achieving semiparametric efficiency. Extensive simulation studies are conducted to evaluate the finite-sample performance, efficiency and robustness of the proposed method. We also illustrate our method via application to a motivating periodontal disease dataset.  相似文献   

6.
In a longitudinal study where the recurrence of an event and a terminal event such as death are observed, a certain portion of the subjects may experience no event during a long follow-up period; this often denoted as the cure group which is assumed to be the risk-free from both recurrent events and death. However, this assumption ignores the possibility of death, which subjects in the cure group may experience. In the present study, such misspecification is investigated with the addition of a death hazard model to the cure group. We propose a joint model using a frailty effect, which reflects the association between a recurrent event and death. For the estimation, an expectation-maximization (EM) algorithm was developed and PROC NLMIXED in SAS was incorporated under a piecewise constant baseline. Simulation studies were performed to check the performance of the suggested method. The proposed method was applied to leukemia patients experiencing both infection and death after bone marrow transplant.  相似文献   

7.
A time-dependent measure, termed the rate ratio, was proposed to assess the local dependence between two types of recurrent event processes in one-sample settings. However, the one-sample work does not consider modeling the dependence by covariates such as subject characteristics and treatments received. The focus of this paper is to understand how and in what magnitude the covariates influence the dependence strength for bivariate recurrent events. We propose the covariate-adjusted rate ratio, a measure of covariate-adjusted dependence. We propose a semiparametric regression model for jointly modeling the frequency and dependence of bivariate recurrent events: the first level is a proportional rates model for the marginal rates and the second level is a proportional rate ratio model for the dependence structure. We develop a pseudo-partial likelihood to estimate the parameters in the proportional rate ratio model. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. We illustrate the proposed models and methods using a soft tissue sarcoma study that examines the effects of initial treatments on the marginal frequencies of local/distant sarcoma recurrence and the dependence structure between the two types of cancer recurrence.  相似文献   

8.
Wang L  Du P  Liang H 《Biometrics》2012,68(3):726-735
Summary In some survival analysis of medical studies, there are often long-term survivors who can be considered as permanently cured. The goals in these studies are to estimate the noncured probability of the whole population and the hazard rate of the susceptible subpopulation. When covariates are present as often happens in practice, to understand covariate effects on the noncured probability and hazard rate is of equal importance. The existing methods are limited to parametric and semiparametric models. We propose a two-component mixture cure rate model with nonparametric forms for both the cure probability and the hazard rate function. Identifiability of the model is guaranteed by an additive assumption that allows no time-covariate interactions in the logarithm of hazard rate. Estimation is carried out by an expectation-maximization algorithm on maximizing a penalized likelihood. For inferential purpose, we apply the Louis formula to obtain point-wise confidence intervals for noncured probability and hazard rate. Asymptotic convergence rates of our function estimates are established. We then evaluate the proposed method by extensive simulations. We analyze the survival data from a melanoma study and find interesting patterns for this study.  相似文献   

9.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   

10.
Recurrent events could be stopped by a terminal event, which commonly occurs in biomedical and clinical studies. In this situation, dependent censoring is encountered because of potential dependence between these two event processes, leading to invalid inference if analyzing recurrent events alone. The joint frailty model is one of the widely used approaches to jointly model these two processes by sharing the same frailty term. One important assumption is that recurrent and terminal event processes are conditionally independent given the subject‐level frailty; however, this could be violated when the dependency may also depend on time‐varying covariates across recurrences. Furthermore, marginal correlation between two event processes based on traditional frailty modeling has no closed form solution for estimation with vague interpretation. In order to fill these gaps, we propose a novel joint frailty‐copula approach to model recurrent events and a terminal event with relaxed assumptions. Metropolis–Hastings within the Gibbs Sampler algorithm is used for parameter estimation. Extensive simulation studies are conducted to evaluate the efficiency, robustness, and predictive performance of our proposal. The simulation results show that compared with the joint frailty model, the bias and mean squared error of the proposal is smaller when the conditional independence assumption is violated. Finally, we apply our method into a real example extracted from the MarketScan database to study the association between recurrent strokes and mortality.  相似文献   

11.
Zeng D  Lin DY 《Biometrics》2009,65(3):746-752
Summary .  We propose a broad class of semiparametric transformation models with random effects for the joint analysis of recurrent events and a terminal event. The transformation models include proportional hazards/intensity and proportional odds models. We estimate the model parameters by the nonparametric maximum likelihood approach. The estimators are shown to be consistent, asymptotically normal, and asymptotically efficient. Simple and stable numerical algorithms are provided to calculate the parameter estimators and to estimate their variances. Extensive simulation studies demonstrate that the proposed inference procedures perform well in realistic settings. Applications to two HIV/AIDS studies are presented.  相似文献   

12.
13.
Liu M  Lu W  Shao Y 《Biometrics》2006,62(4):1053-1061
Interval mapping using normal mixture models has been an important tool for analyzing quantitative traits in experimental organisms. When the primary phenotype is time-to-event, it is natural to use survival models such as Cox's proportional hazards model instead of normal mixtures to model the phenotype distribution. An extra challenge for modeling time-to-event data is that the underlying population may consist of susceptible and nonsusceptible subjects. In this article, we propose a semiparametric proportional hazards mixture cure model which allows missing covariates. We discuss applications to quantitative trait loci (QTL) mapping when the primary trait is time-to-event from a population of mixed susceptibility. This model can be used to characterize QTL effects on both susceptibility and time-to-event distribution, and to estimate QTL location. The model can naturally incorporate covariate effects of other risk factors. Maximum likelihood estimates for the parameters in the model as well as their corresponding variance estimates can be obtained numerically using an EM-type algorithm. The proposed methods are assessed by simulations under practical settings and illustrated using a real data set containing survival times of mice after infection with Listeria monocytogenes. An extension to multiple intervals is also discussed.  相似文献   

14.
Elashoff RM  Li G  Li N 《Biometrics》2008,64(3):762-771
Summary .   In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel ( Prentice et al., 1978 , Biometrics 34, 541–554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.  相似文献   

15.
Summary .   Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (≥1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.  相似文献   

16.
We consider a conceptual correspondence between the missing data setting, and joint modeling of longitudinal and time‐to‐event outcomes. Based on this, we formulate an extended shared random effects joint model. Based on this, we provide a characterization of missing at random, which is in line with that in the missing data setting. The ideas are illustrated using data from a study on liver cirrhosis, contrasting the new framework with conventional joint models.  相似文献   

17.
This paper presents an extension of the joint modeling strategy for the case of multiple longitudinal outcomes and repeated infections of different types over time, motivated by postkidney transplantation data. Our model comprises two parts linked by shared latent terms. On the one hand is a multivariate mixed linear model with random effects, where a low‐rank thin‐plate spline function is incorporated to collect the nonlinear behavior of the different profiles over time. On the other hand is an infection‐specific Cox model, where the dependence between different types of infections and the related times of infection is through a random effect associated with each infection type to catch the within dependence and a shared frailty parameter to capture the dependence between infection types. We implemented the parameterization used in joint models which uses the fitted longitudinal measurements as time‐dependent covariates in a relative risk model. Our proposed model was implemented in OpenBUGS using the MCMC approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号