首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Higher trophic level interactions are key mediators of ecosystem functioning in tropical forests. A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underlying such effects. The 'enemies hypothesis’ states that predators exert more effective top–down control of herbivorous insects with increasing plant diversity. Support for this hypothesis has been found in temperate forests and agroecosystems, but remains understudied in tropical forests. We compared incidence of attacks of different natural enemies using artificial caterpillars in a tropical forest landscape and investigated the role of plant community structure (i.e. species richness, composition and density), and the role of forest fragmentation (i.e. patch size, edge distance and canopy openness) on predation intensity. Plant community effects were tested with respect to three vegetation strata: trees, saplings and herbs. Observed predation was substantially due to ants. Predation rates increased with plant species richness for trees and herbs. Density of saplings, herb cover and herb species composition were important factors for predation. No significant patterns were found for fragmentation parameters, suggesting that forest fragmentation has not altered predation intensity. We conclude that in tropical forests, top–down control of herbivorous insects in the understory vegetation is affected by a combination of plant diversity, plant species composition and structural features of the plant community.  相似文献   

2.
Environmental stressors and changes in land use have led to rapid and dramatic species losses. As such, we need effective monitoring programs that alert us not only to biodiversity losses, but also to functional changes in species assemblages and associated ecosystem processes. Ants are important components of terrestrial food webs and a key group in food web interactions and numerous ecosystem processes. Their sensitive and rapid response to environmental changes suggests that they are a suitable indicator group for the monitoring of abiotic, biotic, and functional changes. We tested the suitability of the incidence (i.e. the sum of all species occurrences at 30 baits), species richness, and functional richness of ants as indicators of ecological responses to environmental change, forest degradation, and of the ecosystem process predation on herbivorous arthropods. We sampled data along an elevational gradient (1000–3000 m a.s.l.) and across seasons (wetter and drier period) in a montane rainforest in southern Ecuador. The incidence of ants declined with increasing elevation but did not change with forest degradation. Ant incidence was higher during the drier season. Species richness was highly correlated with incidence and showed comparable results. Functional richness also declined with increasing elevation and did not change with forest degradation. However, a null-model comparison revealed that the functional richness pattern did not differ from a pattern expected for ant assemblages with randomly distributed sets of traits across species. Predation on artificial caterpillars decreased along the elevational gradient; the pattern was not driven by elevation itself, but by ant incidence (or interchangeable by ant richness), which positively affected predation. In spite of lower ant incidence (or ant richness), predation was higher during the wetter season and did not change with forest degradation and ant functional richness. We used path analysis to disentangle the causal relationships of the environmental factors temperature (with elevation as a proxy), season, and habitat degradation with the incidence and functional richness of ants, and their consequences for predation. Our results would suggest that the forecasted global warming might support more active and species-rich ant assemblages, which in turn would mediate increased predation on herbivorous arthropods. However, this prediction should be made with reservation, as it assumes that the dispersal of ants keeps pace with the climatic changes as well as a one-dimensional relationship between ants and predation within a food-web that comprises species interactions of much higher complexity. Our results also suggested that degraded forests in our study area might provide suitable habitat for epigaeic, ground-dwelling ant assemblages that do not differ in incidence, species richness, functional richness, composition, or predation on arthropods from assemblages of primary forests. Most importantly, our results suggest that the occurrence and activity of ants are important drivers of ecosystem processes and that changes in the incidence and richness of ants can be used as effective indicators of responses to temperature changes and of predation within mega-diverse forest ecosystems.  相似文献   

3.
1. Epigeic ants are functionally important arthropods in tropical and subtropical forests, particularly by acting as predators. High predation pressure has been hypothesised to be a mechanism facilitating high diversity across trophic levels. 2. In this study, standardised pitfall traps were used in a highly diverse subtropical forest to test if and how ant species richness is related to tree species richness and a comprehensive set of other environmental variables such as successional age, soil properties or elevation. 3. A total of 13 441 ant individuals belonging to 3839 species occurrences and 71 species were collected, of which 26 species were exclusive predators and 45 species were omnivores. 4. Occurrence and species richness of total and omnivore ants were positively related to soil pH. Predator ant occurrence was unrelated to all environmental variables tested. 5. The species richness of predator ants increased with tree species richness but decreased with leaf functional diversity and shrub cover. Elevation negatively influenced only total ant species richness. 6. The evenness of predators increased with tree species richness, while the evenness of all ants decreased with shrub cover. Omnivore ant evenness decreased with tree evenness, but increased with successional age. 7. The results highlight the value of diverse forests in maintaining species richness and community evenness of a functionally important predator group. Moreover, the results stress the importance of analysing trophic groups separately when investigating biodiversity effects.  相似文献   

4.
Invasional 'meltdown' on an oceanic island   总被引:11,自引:0,他引:11  
Islands can serve as model systems for understanding how biological invasions affect community structure and ecosystem function. Here we show invasion by the alien crazy ant Anoplolepis gracilipes causes a rapid, catastrophic shift in the rain forest ecosystem of a tropical oceanic island, affecting at least three trophic levels. In invaded areas, crazy ants extirpate the red land crab, the dominant endemic consumer on the forest floor. In doing so, crazy ants indirectly release seedling recruitment, enhance species richness of seedlings, and slow litter breakdown. In the forest canopy, new associations between this invasive ant and honeydew‐secreting scale insects accelerate and diversify impacts. Sustained high densities of foraging ants on canopy trees result in high population densities of host‐generalist scale insects and growth of sooty moulds, leading to canopy dieback and even deaths of canopy trees. The indirect fallout from the displacement of a native ‘keystone’ species by an ant invader, itself abetted by introduced/cryptogenic mutualists, produces synergism in impacts to precipitate invasional ‘meltdown’ in this system.  相似文献   

5.
The standardized 'Ants of the Leaf Litter' protocol aims to facilitate the use of ground-foraging and litter-dwelling ants in biodiversity assessment and monitoring programs. It was initially developed to characterize assemblages from tropical rain forests and is based on two main techniques: Winkler extractions and pitfall traps. Here, we tested to what extent this protocol was adapted to tropical dry forests and affected by the rainfall regime. Our 10 study sites were located along an aridity gradient (average annual rainfall: 350–1300mm) in the Gran Chaco. The number of species collected per sampling effort increased with aridity for pitfalls but followed an opposite trend for Winkler samples. This trend could be explained by the low daytime foraging activity in the leaf litter during drought periods. In arid and semiarid regions the good performance of pitfalls was probably related to their 24-h operation and to the attractiveness of the water they contained. Our results stress that the Winkler method used in the Ants of the Leaf Litter protocol may not be cost-effective during periods of drought and may lead to severe underestimations of litter ant diversity in tropical dry forests.  相似文献   

6.
In species‐rich ecosystems, such as subtropical and tropical forests, higher trophic level interactions are key mediators of ecosystem functioning. Plant species loss may alter these interactions, but the effects of plant diversity might be modified by intraguild interactions, particularly among predators. We analyzed the relationships between spiders and ants, two dominant predatory arthropod taxa, on tree saplings across a gradient from medium to high woody plant species richness in a subtropical forest in Southeast China. Neither ant nor spider total biomass was significantly related to plant species richness. By contrast, the biomass distribution of web‐building and hunting spiders changed and spider family richness increased in the presence of ants, resulting in more web builder‐dominated assemblages. However, these relationships depended on the plant communities, and were stronger in plots with higher plant species richness. Our results indicate that in addition to potential effects of ants on hunting spiders in particular, ants could indirectly influence intraguild interactions within spider assemblages. The observed shifts in the spider assemblages with increasing ant presence and plant species richness may have functional consequences, as web‐building and hunting spiders have distinct prey spectra. The relationships among ants, spiders, and plant species richness might contribute to explaining the non‐significant relationship between the overall effects of predators and plant diversity previously observed in the same forest plots. Our findings thus give insight into the complexity of biotic interactions in such species‐rich ecosystems.  相似文献   

7.
Land use change is accelerating globally at the expense of biodiversity and ecosystem functioning. Invertebrates are numerically dominant and functionally important in old growth tropical rain forests but highly susceptible to the adverse effects of forest degradation and fragmentation. Ants (Formicidae) and termites (Blattodea: Termitoidae) perform crucial ecosystem services. Here, the potential effects of anthropogenic disturbance on ant and termite communities in dead wood are investigated. Community composition, generic richness, and occupancy rates of ants and termites were compared among two old growth sites (Danum Valley and Maliau Basin) and one twice‐logged site (the Stability of Altered Forest Ecosystems’ (SAFE) Project), in Sabah, Malaysian Borneo. Occupancy was measured as the number of ant or termite encounters (1) per deadwood items, and (2) per deadwood volume, and acts as surrogates for relative abundance (or generic richness). Termites had a lower wood‐occupancy per volume in logged forest. In contrast, there were more ant encounters, and more ant genera, in logged sites and there was a community shift (especially, there were more Crematogaster encounters). The disruption of soil and canopy structure in logged forest may reduce both termite and fungal decay rates, inducing increased deadwood residence times and therefore favoring ants that nest in dead wood. There is an anthropogenic‐induced shift of dead wood in ants and termites in response to disturbance in tropical rain forests and the nature of that shift is taxon‐specific.  相似文献   

8.
杨效东 《生物多样性》2004,12(2):252-261
2000年5月-2001年4月,采用尼龙网袋法,以西双版纳热带季节雨林混合凋落叶作为分解基质,在3个季节雨林样地开展分解实验,对实验过程中分解袋内的中小型土壤节肢动物(meso—microarthropod)进行取样调查。根据所获数据探讨了中小型土壤节肢动物群落在分解过程中的结构和动态。结果显示:(1)在季节雨林凋落叶分解过程中,中小型土壤节肢动物群落组成始终以弹尾目和蜱螨目相对数量较高(均在30%以上),成为优势类群。(2)分解中期,土壤节肢动物群落多样性指数,类群、个体及重要类群的数量均处于整个分解过程中的较高水平,分解初期和后期相对较低,且波动性大,其中分解初期各多样性指标在波动过程中呈逐步增长趋势,而后期逐步降低,其变化过程受凋落叶数量和质量、林地降雨量变化的影响。土壤动物群落类群和个体相对密度(每克凋落叶干重的类群数和个体数)的变化可在一定程度上反映土壤动物与凋落物质量的动态关系。(3)不同样地间,土壤节肢动物群落结构及动态差异在分解前期不明显,而分解后期差异有所增加,但3样地凋落叶分解物质损失率没有明显差异。  相似文献   

9.
The leaf litter of tropical wet forests is replete with itinerant ant nests. Nest movement may help ants evade the constraints of stress and disturbance and increase access to resources. I studied how nest relocation and environmental factors may explain the density, size, and growth of leaf litter ant nests. I decoupled the relationships among litter depth, food abundance, and nest availability in a 4‐mo manipulation of food and leaf litter in a community of litter‐nesting ants in a lowland wet forest in Costa Rica. Over 4 mo, 290 1 m2 treatment and control plots were sampled without replacement. Nest densities doubled in response to food supplementation, but did not decrease in response to litter removal or stress (from litter trampling). The supplementation of food increased the utilization of less favored nesting materials. In response to food supplementation and litter trampling, arboreal ants established nests in the litter, and growth rates of the most common ants (Pheidole spp.) increased. Colony growth was independent of colony size and growth rates of the most abundant ants. In general, I conclude that litter‐nesting ant density is driven primarily by food limitation, that nest relocation behavior significantly affects access to resource and the demographic structure of this community, and that nest fission may be a method to break the growth–reproduction trade‐off.  相似文献   

10.
Plankton data from 1997 to 2005 were used to examine impacts of a managed draw-down, subsequent drought and resulting historic low water levels (during 2000 and 2001) on the zooplankton of Lake Okeechobee, Florida. Prior to the drought the lake supported less than 150 ha of submerged vegetation. Following the drought, over 15,000 ha of submerged vegetation developed around the lake shore and conditions favored greater survival of age 0 fish. The zooplankton changed significantly from the pre- to post-drought period, including: (a) a near-complete loss of all dominant species of cladocerans and rotifers; and (b) an abrupt transition to a community with over 80% of total biomass comprised of Arctodiaptomus dorsalis, a calanoid copepod previously described as being resistant to fish predation. These changes persisted over a 5 year post-drought sampling period. In contrast, there were no systematic changes in biomass of bacteria, phytoplankton, inedible cyanobacteria, algal cell size, suspended solids, or any other physical or chemical attributes known to affect zooplankton in shallow lakes. Evidence points towards increased predation by fish, and perhaps invertebrates, as factors responsible for loss of cladocerans and rotifers following the drought, and indicates a need for future research to link changes in water level to shifts in predation pressure in this and other shallow lakes. Handling editor: S.I. Dodson  相似文献   

11.
Pheidole megacephala is an exotic ant species that has severely affected native invertebrate biodiversity throughout the tropics. Its impacts have been documented extensively in relatively depauperate invertebrate communities, but not in species-rich habitats such as tropical rain forests. Here we describe the local distribution of P. megacephala and its impacts on native invertebrate assemblages in and around a rain forest patch at Howard Springs, in Australia's monsoonal tropics. P. megacephala was found to be confined to a single area of approximately 25 ha, with its distribution centered on drainage lines and the rain forest. Significant but weak correlations were found between its abundance and vegetative canopy cover (positive) and distance from the rain forest (negative). In the most heavily infested area within the rain forest, the abundance of P. megacephala was 37–110 times that of total native ant abundance found within uninfested plots, as measured by pitfall traps. The abundance and richness of native ants and other invertebrates were significantly reduced in litter samples, pitfall catches and foliage beats where P. megacephala was present, inversely relative to the abundance of P. megacephala. Only two individuals of a single native ant species were found within the most infested plot, with native ant richness being reduced to about half in the least infested plot. The most persistent functional groups of native ants in infested plots were Cryptic species, which forage primarily within soil and leaf litter, and Opportunists, which exhibit highly generalised foraging behaviour. The highest abundance of P. megacephala corresponded with a 42–85% decrease in the abundance of other native invertebrates. Insect larvae were totally absent from foliage beats collected at the most heavily infested plot. P. megacephala was found overall to be expanding its range, averaging 12 m range expansion in the dry season and contracting 7 m in the wet season. It is able to spread into surrounding savanna habitats by occupying relatively sheltered microsites, such as beneath logs and at the bases of trees. However, it is unlikely to attain high population densities in open savanna habitats because of its relative intolerance of desiccation, and the prevalence of behaviourally dominant native ant species. Howard Springs is currently the only rain forest patch in monsoonal Australia known to be infested by P. megacephala, but clearly this ant is a serious potential threat to the region's rain forest invertebrate fauna. Received: 19 August 1998 / Accepted: 12 May 1999  相似文献   

12.
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20?cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6?months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.  相似文献   

13.
In tropical rain forests, high canopy trees have diverse and abundant populations of ants and spiders. However, accessing high trees and their fauna remains difficult; thus, how ants and spiders interact in the canopy remains unclear. To better understand the interspecific interactions between these two dominant arthropod groups, we investigated their spatial distributions at the canopy surface in a tropical rain forest in Borneo. We sampled ants and spiders six times between 2009 and 2011 by sweeping with an insect net at the tree crown surfaces of 190 emergent or tall (≥20 m in height) trees. We collected 438 ant individuals belonging to 94 species and 1850 spider individuals (1630 juveniles and 220 adults) belonging to 142 morphospecies (adults only) from a total of 976 samples. The fact that we collected four times more spider individuals than ant individuals suggests that fewer ants forage at the tree crown surface than previously thought. The number of spider individuals negatively correlated with the number of ant individuals and the number of ant species, indicating significant exclusivity between ant and spider spatial distributions at the tree crown surface. Niche‐overlap between the two taxa confirmed this observation. Although our data do not address the causes of these spatial distributions, antagonistic interspecific interactions such as interference behaviors and intra‐guild predation are ecological mechanisms that give rise to exclusive spatial distributions.  相似文献   

14.
15.
The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.  相似文献   

16.
Diversity‐manipulation experiments suggest a positive effect of biodiversity on ecosystem properties (EPs), but variable relationships between species richness and EPs have been reported in natural communities. An explanation for this discrepancy is that observed richness–EPs relationships in natural communities change with environment and species functional identities. But how the relationships change along broad‐scale climatic gradients has rarely been examined. In this paper, we sampled 848 plots of 20 × 30 m2 from boreal to tropical forests across China. We examined plot biomass with respect to environmental factors, tree species richness and functional group identity (FGI, i.e. evergreen vs deciduous, and coniferous vs broadleaf). Variation partitioning was used to evaluate the relative effects of the three classes of factors. We found that, most of the ‘effects’ (percentage of variation explained) of richness and FGI on forest biomass were shared with environmental factors, but species richness and FGI still revealed significant effects in addition to environment for plots across China. Richness and FGI explained biomass mainly through their shared effects instead of independent effects, suggesting that the positive biodiversity effect is closely associated with a sampling effect. The relative effects of richness, FGI and environment varied latitudinally: the independent effects of environment and richness decreased from boreal to subtropical forests, whereas the total effect of FGI increased. We also found that the slope of richness–biomass relationship decreased monotonically from boreal to subtropical forests, possibly because of decreasing complementarity and increasing competition with increasing productivity. Our results suggest that while species richness does have significant effects on forest biomass it is less important than environmental gradients and other biotic factors in shaping large‐scale biomass patterns. We suggest that understanding how and why the diversity–EPs relationships change along climatic gradient would be helpful for a better understanding of real biodiversity effects in natural communities.  相似文献   

17.
Climate change scenarios predict increases in the frequency and duration of ENSO‐related droughts for parts of South‐East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan‐tropical review of recorded drought‐related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought‐vulnerability of trees in South‐East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large‐scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from −100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo‐ or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity.  相似文献   

18.
Michael Kaspari 《Oecologia》1996,107(2):265-273
Large-scale (>100 m2/day) raids by tropical army ants have been linked to litter ant patchiness and diversity. In three Neotropical forests, densities of litter ants vary 10–20 fold at the 1-m2 scale. A survey of Barro Colorado Island. Panama, revealed that most army ant raids also occur on a 1-m2 scale with fronts 1 m wide. To explore the role that such small scale disturbance may play in creating litter ant patchiness, all litter ant nests were removed from 1-m2 plots. Control and disturbance plots were resampled 3 months later. In contrast to a previous study of large litter gaps, ant foundresses did not appear to prefer these smaller gaps. Nest densities, species richness, and species composition differed most from controls in a dry hilltop forest in Panama, second most in a wetter ravine forest nearby, and least in a Costa Rican wet forest. Disturbance may not leave a lasting signature in the wetter forests due to higher background levels of disturbance, faster recovery, or both.  相似文献   

19.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

20.
James R. Vonesh 《Biotropica》2001,33(3):502-510
I compared species richness and habitat correlates of leaf‐litter herpetofaunal abundance in undisturbed and selectively logged forests, and an abandoned pine plantation in Kibale National Park, Uganda. I sampled 50 randomly located 25 m2 litter plots in each area during the wet and dry seasons in 1997. Ten anuran, five lizard, and three snake species were captured in plots over the study. Assemblage composition was most similar at logged and unlogged sites. The logged forest herpetofauna had higher species richness and abundance than the unlogged forest, but diversity was greater in the unlogged forest due to greater evenness. In contrast, the pine plantation site had the highest richness, abundance, and evenness of the three study sites, but species composition was distinct from the other areas. Herpetofaunal densities were significantly lower in all three areas during the dry season than in the wet season. During the dry season, soil moisture, litter mass, topography, shrub cover, and number of fallen logs were significant positive predictors of herpetofaunal presence in litter plots, but only soil moisture was significant in the wet season. The interaction of moisture and topography appears to be important in determining seasonal patterns of litter herpetofaunal distribution. Comparison of litter herpetofaunal studies across the tropics have shown that mid‐elevation faunas generally support fewer species than lowland faunas. Compared with other tropical mid‐elevation litter faunas, Kibale supports an intermediate number of species, but at lower densities than observed at any other mid‐elevation site reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号