首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Trends in plant science》2023,28(7):765-775
Although herbicide drift is a common side effect of herbicide application in agroecosystems, its effects on the ecology and evolution of natural communities are rarely studied. A recent shift to dicamba, a synthetic auxin herbicide known for ‘drifting’ to nontarget areas, necessitates the examination of drift effects on the plant–insect interactions that drive eco-evo dynamics in weed communities. We review current knowledge of direct effects of synthetic auxin herbicides on plant–insect interactions, focusing on plant herbivory, and discuss potential indirect effects, which are cascading effects on organisms that interact with herbicide-exposed plants. We end by developing a framework for the study of plant–insect interactions given drift, highlighting potential changes to plant developmental timing, resource quantity, quality, and cues.  相似文献   

2.
Salazar  Diego  Jaramillo  Alejandra  Marquis  Robert J. 《Oecologia》2016,181(4):1199-1208
Oecologia - Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant–herbivore interactions, it has been hypothesized that...  相似文献   

3.
Piovia-Scott J 《Oecologia》2011,166(2):411-420
Protective ant–plant mutualisms—where plants provide food or shelter to ants and ants protect the plants from herbivores—are a common feature in many ecological communities, but few studies have examined the effect of disturbance on these interactions. Disturbance may affect the relationship between plants and their associated ant mutualists by increasing the plants’ susceptibility to herbivores, changing the amount of reward provided for the ants, and altering the abundance of ants and other predators. Pruning was used to simulate the damage to buttonwood mangrove (Conocarpus erectus) caused by hurricanes. Pruned plants grew faster than unpruned plants, produced lower levels of physical anti-herbivore defenses (trichomes, toughness), and higher levels of chemical defenses (tannins) and extrafloral nectaries. Thus, simulated hurricane damage increased plant growth and the amount of reward provided to ant mutualists, but did not have consistent effects on other anti-herbivore defenses. Both herbivores and ants increased in abundance on pruned plants, indicating that the effects of simulated hurricane damage on plant traits were propagated to higher trophic levels. Ant-exclusion led to higher leaf damage on both pruned and upruned plants. The effect of ant-exclusion did not differ between pruned and unpruned plants, despite the fact that pruned plants had higher ant and herbivore densities, produced more extrafloral nectaries, and had fewer physical defenses. Another common predator, clubionid spiders, increased in abundance on pruned plants from which ants had been excluded. I suggest that compensatory predation by these spiders diminished the effect of ant-exclusion on pruned plants.  相似文献   

4.
Two pot experiments were conducted to examine three-level interactions between host plants, mycorrhizal fungi and parasitic plants. In a greenhouse experiment, Poa annua plants were grown in the presence or absence of an AM fungus (either Glomus lamellosum V43a or G. mosseae BEG29) and in the presence or absence of a root hemiparasitic plant (Odontites vulgaris). In a laboratory experiment, mycorrhizal infection (Glomus claroideum BEG31) of Trifolium pratense host plants (mycorrhizal versus non-mycorrhizal) was combined with hemiparasite infection (Rhinanthus serotinus) of the host (parasitized versus non-parasitized). Infection with the two species of Glomus had no significant effect on the growth of P. annua, while hemiparasite infection caused a significant reduction in host biomass. Mycorrhizal status of P. annua hosts (i.e. presence/absence of AM fungus) affected neither the biomass nor the number of flowers produced by the attached O. vulgaris plants. Infection with G. claroideum BEG31 greatly increased the biomass of T. pratense, but hemiparasite infection had no effect. The hemiparasitic R. serotinus plants attached to mycorrhizal hosts had higher biomass and produced more flowers than plants growing with non-mycorrhizal hosts. Roots of T. pratense were colonized by the AM fungus to an extent independent of the presence or absence of the hemiparasite. Our results confirm earlier findings that the mycorrhizal status of a host plant can affect the performance of an attached root hemiparasite. However, improvement of the performance of the parasitic plant following attachment to a mycorrhizal host depends on the extent to which the AM fungi is able to enhance the growth of the host. Accepted: 23 February 2001  相似文献   

5.
The technologically altered structure of raised bogs plant communities adjacent to the waste pits of the largest oil fields in the Middle Ob (middle taiga subzone) is considered. A list of vascular plants is detected; mosses are the dominant species.  相似文献   

6.
Enhanced ultraviolet-B (UV-B) radiation may have multiple effects on both plants and animals and affect plant–herbivore interactions directly and indirectly by inducing changes in host plant quality. In this study, we examined combined effects of UV-B and herbivory on the defence of the mountain birch (Betula pubescens ssp. czerepanovii) and also the effects of enhanced UV-B radiation on a geometrid with an outbreak cycle: the autumnal moth (Epirrita autumnata). We established an experiment mimicking ozone depletion of 30% (a relevant level when simulating ozone depletion above Northern Lapland). Both arctic species responded only slightly to the enhanced level of UV-B radiation, which may indicate that these species are already adapted to a broader range of UV-B radiation. UV-B exposure slightly induced the accumulation of myricetin glycosides but had no significant effect on the contents of quercetin or kaempferol derivatives. Mountain birch seedlings responded more efficiently to herbivory wounding than to enhanced UV-B exposure. Herbivory induced the activities of foliar oxidases that had earlier been shown to impair both feeding and growth of moth larvae. In contrast, the contents of foliar phenolics did not show the same response in different clones, except for a decrease in the contents of tannin precursors. The induction of foliar phenoloxidase activities is a specific defence response of mountain birches against insect herbivory. To conclude, our results do not support the hypothesis that the outbreak cycle of the autumnal moth can be explained by the cycles of solar activity and UV-B.  相似文献   

7.
8.
Anthropogenic pollution causes oxidative stress in plants and reactive oxygen species (ROS) are diminished by antioxidative enzymes and small molecular antioxidants. Pollution may also affect the performance of plant-eating animals by increasing or decreasing their performance. The effects of pollution cannot be fully understood without knowledge of how pollution affects the interactions with the third trophic level, namely natural enemies and diseases of herbivores. In this study, we examined how long-term (19 yr) acid rain pollution affects (i) the oxidative responses in mountain birch foliage and (ii) the growth and immune responses of autumnal moth larvae. We found that pollution caused a 50% increase (p<0.05) in the peroxidase activities (PODs) in birch leaves whereas polyphenoloxidase (PPO) or catalase (CAT) activities were not affected, suggesting that PODs play an important role in the quenching of the oxidative stress in birches. In polluted trees, phenoloxidases probably acted as antioxidative not prooxidative enzymes, which was shown as positive relations between enzyme activities (PPO, CAT) and larval performance (pupal weights). Although acid rain pollution did not have any direct effect on either pupal weight or the length of larval period, the stronger acid rain treatment reduced slightly (6% in females) the encapsulation response of pupae. A decrease of this magnitude might be too small to have measurable effects on the incidence of moth outbreaks.  相似文献   

9.
It is widely believed that the diversity of plants influences the diversity of animals, and this should be particularly true of herbivores. We examine this supposition at a moderate spatial extent by comparing the richness patterns of the 217 butterfly species resident in California to those of plants, including all 5,902 vascular plant species and the 552 species known to be fed on by caterpillars. We also examine the relationships between plant/butterfly richness and 20 environmental variables. We found that although plant and butterfly diversities are positively correlated, multiple regression, path models, and spatial analysis indicate that once primary productivity (estimated by a water-energy variable, actual evapotranspiration) and topographical variability are incorporated into models, neither measure of plant richness has any relationship with butterfly richness. To examine whether butterflies with the most specialized diets follow the pattern found across all butterflies, we repeated the analyses for 37 species of strict monophages and their food plants and found that plant and butterfly richness were similarly weakly associated after incorporating the environmental variables. We condude that plant diversity does not directly influence butterfly diversity but that both are probably responding to similar environmental factors.  相似文献   

10.
11.
1. Plant–animal mutualisms are key processes that influence community structure, dynamics, and function. They reflect several neutral and niche-based mechanisms related to plant–animal interactions. 2. However, the strength with which these processes influence community structure depends on functional traits that influence the interactions between mutualistic partners. In mutualisms involving plants and ants, nectar is the most common reward, and traits such as quantity and quality can affect ant species' responses by influencing their recruitment rates and aggressiveness. 3. In this study, nectar traits that mediate ant–plant defensive mutualisms were manipulated to test whether resource quantity and quality affect the structure of ant–plant interaction networks. A downscaling approach was used to investigate the interaction network between ant species and individual plants of the extrafloral nectary-bearing terrestrial orchid Epidendrum secundum. 4. We found a short-term reorganization of the ant assemblage that caused the interaction networks to become more specialised and modular in response to a more rewarding nectar gradient. Furthermore, the ant species tended to narrow their foraging range by limiting their associations to one or a few individual plants. 5. This study shows that ant species' responses to variable resource traits play an important role in the structure of the ant–plant interaction network. We suggest that more rewarding nectar enhanced aggressiveness and a massive recruitment of some ant species, leading to lower niche overlap and thus a less connected and more specialised network.  相似文献   

12.
Despite recognition of key biotic processes in shaping the structure of biological communities, few empirical studies have explored the influences of abiotic factors on the structural properties of mutualistic networks. We tested whether temperature and precipitation contribute to temporal variation in the nestedness of mutualistic ant–plant networks. While maintaining their nested structure, nestedness increased with mean monthly precipitation and, particularly, with monthly temperature. Moreover, some species changed their role in network structure, shifting from peripheral to core species within the nested network. We could summarize that abiotic factors affect plant species in the vegetation (e.g., phenology), meaning presence/absence of food sources, consequently an increase/decrease of associations with ants, and finally, these variations to fluctuations in nestedness. While biotic factors are certainly important, greater attention needs to be given to abiotic factors as underlying determinants of the structures of ecological networks.  相似文献   

13.
Tad A. Dallas  Luca Santini 《Ecography》2020,43(9):1341-1351
Species have been commonly hypothesized to have high population densities in geographic areas which correspond to either the centre of the species geographic range or climatic niche (abundant–centre hypothesis). However, there is mixed empirical support for this relationship, and little theoretical underpinning. We simulate a species spreading across a set of replicated artificial landscapes to examine the expected level of support for abundant–centre relationships in geographic and niche space. Species niche constraints were modeled as a single axis which was related directly to population growth rates. We found strong evidence for abundant–centre relationships when populations follow deterministic growth, dispersal is high, environmental noise is absent and intraspecific competition is low. However, the incorporation of ecological realism reduced the detectability of abundant–centre relationships considerably. Our results suggest that even in carefully constructed artificial landscapes designed to demonstrate abundant–centre dynamics, the incorporation of small amounts of demographic stochasticity, environmental heterogeneity or landscape structure can strongly influence the relationship between species population density and distance to species geographic range or niche centre. While some simulated relationships were of comparable strength to common empirical support for abundant–centre relationships, our results suggest that these relationships are expected to be fairly variable and weak.  相似文献   

14.
Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.  相似文献   

15.
Vegetation complexity is characterized by two major traits, i.e., plant chemical and plant structural complexity. Plant species diversity strongly determines these traits. Furthermore, plant structures affect microclimatic conditions, which in turn influence the emission and dispersion of plant volatiles (e.g., chemical complexity). Plant volatile chemical complexity may significantly affect orientation of herbivorous and carnivorous arthropods. Therefore, the way in which plant chemical and plant structural complexity act “in concert” may influence foraging and mating success of arthropods, and thus, finally, community composition. This review emphasizes an integrative view on the relationship between plant species diversity, plant structural complexity, plant volatiles (chemical complexity) and their effects on arthropods. Three new hypotheses are raised, which predict possible relations between plant volatile complexity and plant species diversity: (1) saturation-, (2) step-by-step, (3) incoherence-hypothesis. We conclude that arthropod orientation in natural environments is strongly determined by the relationship between plant volatile diversity and plant species diversity. Furthermore, we emphasize that structural complexity of the vegetation affects plant volatile diversity and thus, arthropod orientation.We review available information on how insects actually respond to complexity during olfactory and visual search and ask for both laboratory and field studies to further unravel the mechanisms of interactions between vegetation traits and their impact on arthropod orientation.  相似文献   

16.
Pollination is one of the most important aspects of the life histories of most vascular plants. Until recently, there has been a broad consensus that heterospecific neighbors compete for pollinators, that this competition leads to phenological divergence, and that divergence leads to structured communities. New work is revealing a more complex web of interactions.  相似文献   

17.
The enzymic activity of ribonuclease A was measured in the presence of several surfactants at pH7.2. Cationic surfactants with trimethylammonium and pyridinium head groups do not deactivate or denature the enzyme, whereas n-dodecylamine hydrochloride, like the anionic surfactant sodium n-dodecyl sulphate, deactivates and denatures ribonuclease A.  相似文献   

18.
Sense of agency, the experience of controlling external events through one''s actions, stems from contiguity between action- and effect-related signals. Here we show that human observers link their action- and effect-related signals using a computational principle common to cross-modal sensory grouping. We first report that the detection of a delay between tactile and visual stimuli is enhanced when both stimuli are synchronized with separate auditory stimuli (experiment 1). This occurs because the synchronized auditory stimuli hinder the potential grouping between tactile and visual stimuli. We subsequently demonstrate an analogous effect on observers'' key press as an action and a sensory event. This change is associated with a modulation in sense of agency; namely, sense of agency, as evaluated by apparent compressions of action–effect intervals (intentional binding) or subjective causality ratings, is impaired when both participant''s action and its putative visual effect events are synchronized with auditory tones (experiments 2 and 3). Moreover, a similar role of action–effect grouping in determining sense of agency is demonstrated when the additional signal is presented in the modality identical to an effect event (experiment 4). These results are consistent with the view that sense of agency is the result of general processes of causal perception and that cross-modal grouping plays a central role in these processes.  相似文献   

19.
We conducted an 8-year exclosure experiment (1999–2006) in a forest–tundra ecotonal area in northwestern Finnish Lapland to study the effects of reindeer grazing on vegetation in habitats of variable productivity and microhabitat structure. The experimental sites included tundra heath, frost heath and riparian habitats, and the two latter habitats were characterized by hummock-hollow ground forms. The total cover of vegetation, cover of willow (Salix spp.), dwarf birch (Betula nana), dwarf shrubs, forbs and grasses (Poaceae spp.) increased in exclosures in all habitats. The increase in the total cover of vegetation and in the covers of willow and dwarf birch tended to be greatest in the least productive tundra heath. Opposing to the increase in the dominant vascular plant groups, the cover and species number of bryophytes decreased in exclosures. We conclude that the effects of reindeer grazing on vegetation composition depend on environmental heterogeneity and the responses vary among plant groups. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The pyridazinone-type herbicide norflurazon SAN 9789 inhibiting the biosynthesis of long-chain carotenoids results in significant decrease in PS II core complexes and content of light-harvesting complex (LHC) polypeptides in the 29.5–21 kDa region. The Chl a forms at 668, 676, and 690 nm that belong to LHC and antenna part of PS I disappear completely after treatment. The intensity of the Chl b form at 648 nm is sharply decreased in treated seedlings grown under 30 or 100 lx light intensity. The bands of carotenoid absorption at 421, 448 (Chl a), 452, 480, 492, 496 (β-carotene), and 508 nm also disappear. The band shift from 740 to 720 nm and decrease in its intensity relative to the 687 nm emission peak in the low-temperature fluorescence spectrum (77 K) suggests a disturbance of energy transfer from LHC to the Chla form at 710–712 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号