首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Toxoplasma gondii, an obligate intracellular parasite of humans and other warm-blooded vertebrates, invades a variety of cell types in the organism, including immune cells. Notably, dendritic cells (DCs) infected by T. gondii acquire a hypermigratory phenotype that potentiates parasite dissemination by a ‘Trojan horse’ type of mechanism in mice. Previous studies have demonstrated that, shortly after parasite invasion, infected DCs exhibit hypermotility in 2-dimensional confinements in vitro and enhanced transmigration in transwell systems. However, interstitial migration in vivo involves interactions with the extracellular matrix in a 3-dimensional (3D) space. We have developed a collagen matrix-based assay in a 96-well plate format that allows quantitative locomotion analyses of infected DCs in a 3D confinement over time. We report that active invasion of DCs by T. gondii tachyzoites induces enhanced migration of infected DCs in the collagen matrix. Parasites of genotype II induced superior DC migratory distances than type I parasites. Moreover, Toxoplasma-induced hypermigration of DCs was further potentiated in the presence of the CCR7 chemotactic cue CCL19. Blocking antibodies to integrins (CD11a, CD11b, CD18, CD29, CD49b) insignificantly affected migration of infected DCs in the 3D matrix, contrasting with their inhibitory effects on adhesion in 2D assays. Morphological analyses of infected DCs in the matrix were consistent with the acquisition of an amoeboid-like migratory phenotype. Altogether, the present data show that the Toxoplasma-induced hypermigratory phenotype in a 3D matrix is consistent with integrin-independent amoeboid DC migration with maintained responsiveness to chemotactic and chemokinetic cues. The data support the hypothesis that induction of amoeboid hypermigration and chemotaxis/chemokinesis in infected DCs potentiates the dissemination of T. gondii.  相似文献   

2.
Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a “Trojan horse” mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy‐based high‐throughput approach to assess motility and matrix degradation by Toxoplasma‐challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma‐challenged DCs up‐regulated expression and secretion of tissue inhibitor of metalloproteinases‐1 (TIMP‐1) and their supernatants impaired matrix degradation by naïve DCs and by‐stander DCs dose dependently. Gene silencing of TIMP‐1 by short hairpin RNA restored matrix degradation activity in Toxoplasma‐infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88‐dependent fashion whereas abrogated proteolysis persevered in Toxoplasma‐infected MyD88‐deficient DCs. This indicated that both TLR/MyD88‐dependent and TLR/MyD88‐independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP‐1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma‐induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non‐proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination.  相似文献   

3.
The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon infection, parasitized dendritic cells (DCs) and microglia exhibit a hypermigratory phenotype in vitro that has been associated with enhancing parasite dissemination in vivo in mice. One unresolved question is how parasites commandeer parasitized cells to achieve systemic dissemination by a ‘Trojan‐horse’ mechanism. By chromatography and mass spectrometry analyses, we identified an orthologue of the 14‐3‐3 protein family, T. gondii 14‐3‐3 (Tg14‐3‐3), as mediator of DC hypermotility. We demonstrate that parasite‐derived polypeptide fractions enriched for Tg14‐3‐3 or recombinant Tg14‐3‐3 are sufficient to induce the hypermotile phenotype when introduced by protein transfection into murine DCs, human DCs or microglia. Further, gene transfer of Tg14‐3‐3 by lentiviral transduction induced hypermotility in primary human DCs. In parasites expressing Tg14‐3‐3 in a ligand‐regulatable fashion, overexpression of Tg14‐3‐3 was correlated with induction of hypermotility in parasitized DCs. Localization studies in infected DCs identified Tg14‐3‐3 within the parasitophorous vacuolar space and a rapid recruitment of host cell 14‐3‐3 to the parasitophorous vacuole membrane. The present work identifies a determinant role for Tg14‐3‐3 in the induction of the migratory activation of immune cells by T. gondii. Collectively, the findings reveal Tg14‐3‐3 as a novel target for an intracellular pathogen that acts by hijacking the host cell's migratory properties to disseminate.  相似文献   

4.
The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1) T. gondii relies on glutamine for optimal infection, replication and viability, and 2) T. gondii-infected bone marrow-derived dendritic cells (DCs) display both “hypermotility” and “enhanced migration” to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2) is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1) in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1) blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS)-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility.  相似文献   

5.
During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC) may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA) receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III), DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABAA receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABAA receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens.  相似文献   

6.
Toxoplasma gondii (T. gondii) is a parasitic protist that can infect nearly all nucleated cell types and tissues of warm‐blooded vertebrate hosts. T. gondii utilises a unique form of gliding motility to cross cellular barriers, enter tissues, and penetrate host cells, thus enhancing spread within an infected host. However, T. gondii also disseminates by hijacking the migratory abilities of infected leukocytes. Traditionally, this process has been viewed as a route to cross biological barriers such as the blood–brain barrier. Here, we review recent findings that challenge this view by showing that infection of monocytes downregulates the program of transendothelial migration. Instead, infection by T. gondii enhances Rho‐dependent interstitial migration of monocytes and macrophages, which enhances dissemination within tissues. Collectively, the available evidence indicates that T. gondii parasites use multiple means to disseminate within the host, including enhanced motility in tissues and translocation across biological barriers.  相似文献   

7.
Host cell manipulation is an important feature of the obligate intracellular parasite Toxoplasma gondii. Recent reports have shown that the tachyzoite stages subvert dendritic cells (DC) as a conduit for dissemination (Trojan horse) during acute infection. To examine the cellular basis of these processes, we performed a detailed analysis of the early events following tachyzoite invasion of human monocyte‐derived DC. We demonstrate that within minutes after tachyzoite penetration, profound morphological changes take place in DC that coincide with a migratory activation. Active parasite invasion of DC led to cytoskeletal actin redistribution with loss of adhesive podosome structures and redistribution of integrins (CD18 and CD11c), that concurred with the onset of DC hypermotility in vitro. Inhibition of parasite rhoptry secretion and invasion, but not inhibition of parasite or host cell protein synthesis, abrogated the onset of morphological changes and hypermotility in DC dose‐dependently. Also, infected DC, but not by‐stander DC, exhibited upregulation of C‐C chemokine receptor 7 (CCR7). Yet, the onset of parasite‐induced DC hypermotility preceded chemotactic migratory responsesin vitro. Collectively, present data reveal that invasion of DC by T. gondii initiates a series of regulated events, including rapid cytoskeleton rearrangements, hypermotility and chemotaxis, that promote the migratory activation of DC.  相似文献   

8.
Toxoplasma gondii exploits the migratory properties of monocytes and dendritic cells to promote tissue dissemination. Recently, ten Hoeve et al. reported that the parasite effector protein GRA28 conspires with host chromatin modifiers to confer dendritic cell-like features that convert sessile macrophages into migratory cells that transport infection to distal organs.  相似文献   

9.
Apicomplexan parasites express various calcium‐dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock‐down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7‐depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium‐dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.  相似文献   

10.
Protozoan parasites belong to the most widespread and devastating human pathogens. Their ability to manipulate host responses and establish infection in their hosts continues to puzzle researchers. Recent developments of experimental model systems are contributing to the discovery of new aspects of the biology of parasite dissemination. Here, we review current knowledge on strategies utilized by the apicomplexan parasite Toxoplasma gondii to disseminate and establish infection in its host. Recent findings have revealed intricate mechanisms by which this obligate intracellular protozoan sequesters cellular functions of the immune system to assure propagation. These mechanisms include the hijacking of migratory leucocytes, modulation of migratory properties of infected cells and rapid transfer of parasites between different leucocyte populations by cytotoxicity‐induced parasite egress. Collectively, Toxoplasma strikes a delicate balance, assuring efficient dissemination and establishment of asymptomatic lifelong infection in its host while protecting its intracellular entity and limiting host pathology.  相似文献   

11.
Toxoplasma gondii possesses sets of dense granule proteins (GRAs) that either assemble at, or cross the parasitophorous vacuole membrane (PVM) and exhibit motifs resembling the HT/PEXEL previously identified in a repertoire of exported Plasmodium proteins. Within Plasmodium spp., cleavage of the HT/PEXEL motif by the endoplasmic reticulum-resident protease Plasmepsin V precedes trafficking to and export across the PVM of proteins involved in pathogenicity and host cell remodelling. Here, we have functionally characterized the T. gondii aspartyl protease 5 (ASP5), a Golgi-resident protease that is phylogenetically related to Plasmepsin V. We show that deletion of ASP5 causes a significant loss in parasite fitness in vitro and an altered virulence in vivo. Furthermore, we reveal that ASP5 is necessary for the cleavage of GRA16, GRA19 and GRA20 at the PEXEL-like motif. In the absence of ASP5, the intravacuolar nanotubular network disappears and several GRAs fail to localize to the PVM, while GRA16 and GRA24, both known to be targeted to the host cell nucleus, are retained within the vacuolar space. Additionally, hypermigration of dendritic cells and bradyzoite cyst wall formation are impaired, critically impacting on parasite dissemination and persistence. Overall, the absence of ASP5 dramatically compromises the parasite’s ability to modulate host signalling pathways and immune responses.  相似文献   

12.
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ? Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP‐1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ? Src, and inhibition of EGFR controls pre‐established toxoplasmosis.  相似文献   

13.
One of the hallmarks of the parasitic phylum of Apicomplexa is the presence of highly specialised, apical secretory organelles, called the micronemes and rhoptries that play critical roles in ensuring survival and dissemination. Upon exocytosis, the micronemes release adhesin complexes, perforins, and proteases that are crucially implicated in egress from infected cells, gliding motility, migration across biological barriers, and host cell invasion. Recent studies on Toxoplasma gondii and Plasmodium species have shed more light on the signalling events and the machinery that trigger microneme secretion. Intracellular cyclic nucleotides, calcium level, and phosphatidic acid act as key mediators of microneme exocytosis, and several downstream effectors have been identified. Here, we review the key steps of microneme biogenesis and exocytosis, summarising the still fractal knowledge at the molecular level regarding the fusion event with the parasite plasma membrane.  相似文献   

14.
Toxoplasma gondii is an obligatory intracellular apicomplexan parasite which exploits host cell surface components in cell invasion and intracellular parasitization. Sulfated glycans such as heparin and heparan sulfate have been reported to inhibit cell invasion by T. gondii and other apicomplexan parasites such as Plasmodium falciparum. The aim of this study was to investigate the heparin‐binding proteome of T. gondii. The parasite‐derived components were affinity‐purified on the heparin moiety followed by MS fingerprinting of the proteins. The heparin‐binding proteins of T. gondii and P. falciparum were compared based on functionality and affinity to heparin. Among the proteins identified, the invasion‐related parasite ligands derived from tachyzoite/merozoite surface and the secretory organelles were prominent. However, the profiles of the proteins were different in terms of affinity to heparin. In T. gondii, the proteins with highest affinity to heparin were the intracellular components with functions of parasite development contrasted to that of P. falciparum, of which the rhoptry‐derived proteins were prominently identified. The profiling of the heparin‐binding proteins of the two apicomplexan parasites not only explained the mechanism of heparin‐mediated host cell invasion inhibition, but also, to a certain extent, revealed that the action of heparin on the parasite extended after endocytosis.  相似文献   

15.
Cross‐presentation by MHC class I molecules allows the detection of exogenous antigens by CD8+ T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross‐presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC‐I trafficking and antigen cross‐presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC‐I molecules. The knockdown of Rab22a also hampered the cross‐presentation of soluble, particulate and T. gondii‐associated antigens, but not the endogenous MHC‐I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC‐I endocytic trafficking, which is crucial for efficient cross‐presentation by DCs.  相似文献   

16.
The processes leading to systemic dissemination of the obligate intracellular parasite Toxoplasma gondii remain unelucidated. In vitro studies on human and murine dendritic cells (DC) revealed that active invasion of DC by Toxoplasma induces a state of hypermotility in DC, enabling transmigration of infected DC across endothelial cell monolayers in the absence of chemotactic stimuli. Infected DC exhibited upregulation of maturation markers and co-stimulatory molecules. While modulation of cell adhesion molecules CD11/CD18 was similar for Toxoplasma-infected DC and lipopolysaccharide (LPS)-matured DC, Toxoplasma-infected DC did not exhibit upregulation of CD54/ICAM-1. Induction of host cell migration in vitro required live intracellular parasite(s) and was inhibited by uncoupling the Gi-protein signalling pathway with pertussis toxin, but did not depend on CCR5, CCR7 or Toll/interleukin-1 receptor signalling. When migration of Toxoplasma-infected DC was compared with migration of LPS-stimulated DC in vivo, similar or higher numbers of Toxoplasma-infected DC reached the mesenteric lymph nodes and spleen respectively. Adoptive transfer of Toxoplasma-infected DC resulted in more rapid dissemination of parasites to distant organs and in exacerbation of infection compared with inoculation with free parasites. Altogether, these findings show that Toxoplasma is able to subvert the regulation of host cell motility and likely exploits the host's natural pathways of cellular migration for parasite dissemination.  相似文献   

17.
Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which is widespread throughout the world. After active penetration, the parasite is enclosed within a parasitophorous vacuole and survives in the host cell by avoiding, among other mechanisms, lysosomal degradation. A large number of studies have demonstrated the importance of ATP signalling via the P2X7 receptor, as a component of the inflammatory response against intracellular pathogens. Here we evaluate the effects of extracellular ATP on T. gondii infection of macrophages. ATP treatment inhibits the parasite load and the appearance of large vacuoles in the cytoplasm of intracellular parasites. ROS and NO assays showed that only ROS production is involved with the ATP effects. Immunofluorescence showed colocalization of Lamp1 and SAG1 only after ATP treatment, suggesting the formation of phagolysosomes. The involvement of P2X7 receptors in T. gondii clearance was confirmed by the use of P2X7 agonists and antagonists, and by infecting macrophages from P2X7 receptor-deficient mice. We conclude that parasite elimination might occur following P2X7 signalling and that novel therapies against intracellular pathogens could take advantage of activation of purinergic signalling.  相似文献   

18.
Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.  相似文献   

19.
Toxoplasma gondii, an obligate intracellular protozoan parasite, can establish a chronic infection in the brain by forming tissue cysts. This chronic infection is widespread in humans worldwide including developed countries, with up to one third of the population being estimated to be infected with this parasite. Diagnosis of this chronic infection is usually conducted by serological detection of IgG antibodies against this parasite. Since infected individuals remain positive for these antibodies for years, it has generally been considered that this infection is a lifelong infection. It is also often considered that this chronic infection is “latent” or “quiescent”. However, recent discovery of the capability of perforin-dependent, CD8+ T cell-mediated immune responses to eliminate T. gondii cysts in collaboration with phagocytes illustrated dynamic interplays between T. gondii cysts and host immune system during this chronic infection. Importantly, the cytotoxic T cell-mediated protective immunity is able to remove mature cysts of the parasite. It is now clear that chronic T. gondii infection is not “latent” or “quiescent”. Elucidating the mechanisms of the dynamic host-pathogen interactions between the anti-cyst protective immunity and T. gondii cysts and identifying the pathway to appropriately activate anti-cyst CD8+ cytotoxic T cells would be able to open a door for eradicating T. gondii cysts and curing chronic infection with this parasite.  相似文献   

20.
Toxoplasma gondii is a unique intracellular parasite. It can infect a variety of cells in virtually all warm-blooded animals. It has a worldwide distribution and, overall, around one-third of people are seropositive for the parasite, with essentially the entire human population being at risk of infection. For most people, T. gondii causes asymptomatic infection but the parasite can cause serious disease in the immunocompromised and, if contracted for the first time during pregnancy, can cause spontaneous abortion or congenital defects, which have a substantial emotional, social and economic impact. Toxoplasma gondii provokes one of the most potent innate, pro-inflammatory responses of all infectious disease agents. It is also a supreme manipulator of the immune response so that innate immunity to T. gondii is a delicate balance between the parasite and its host involving a coordinated series of cellular interactions involving enterocytes, neutrophils, dendritic cells, macrophages and natural killer cells. Underpinning these interactions is the regulation of complex molecular reactions involving Toll-like receptors, activation of signalling pathways, cytokine production and activation of anti-microbial effector mechanisms including generation of reactive nitrogen and oxygen intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号