首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li M  Boehnke M  Abecasis GR  Song PX 《Genetics》2006,173(4):2317-2327
Mapping and identifying variants that influence quantitative traits is an important problem for genetic studies. Traditional QTL mapping relies on a variance-components (VC) approach with the key assumption that the trait values in a family follow a multivariate normal distribution. Violation of this assumption can lead to inflated type I error, reduced power, and biased parameter estimates. To accommodate nonnormally distributed data, we developed and implemented a modified VC method, which we call the "copula VC method," that directly models the nonnormal distribution using Gaussian copulas. The copula VC method allows the analysis of continuous, discrete, and censored trait data, and the standard VC method is a special case when the data are distributed as multivariate normal. Through the use of link functions, the copula VC method can easily incorporate covariates. We use computer simulations to show that the proposed method yields unbiased parameter estimates, correct type I error rates, and improved power for testing linkage with a variety of nonnormal traits as compared with the standard VC and the regression-based methods.  相似文献   

2.
The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed, such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach, while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula, suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable phenotypes.  相似文献   

3.
Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide association study (GWAS) of two grading scales for cataract and a replication study of genetic variants influencing blood pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a one standard deviation (SD) in measurement error of a standard normal distributed trait required a one-fold increase in sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results revealed almost no overlap in the significant SNPs (p<10−5) for the two cataract grading scales while replication results in genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements and single blood pressure measurements. We have developed a framework for researchers to quantify power in the presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly variable.  相似文献   

4.
With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.  相似文献   

5.
Genome-wide association studies (GWAS) have identified thousands of genetic variants that are associated with complex traits. However, a stringent significance threshold is required to identify robust genetic associations. Leveraging relevant auxiliary covariates has the potential to boost statistical power to exceed the significance threshold. Particularly, abundant pleiotropy and the non-random distribution of SNPs across various functional categories suggests that leveraging GWAS test statistics from related traits and/or functional genomic data may boost GWAS discovery. While type 1 error rate control has become standard in GWAS, control of the false discovery rate can be a more powerful approach. The conditional false discovery rate (cFDR) extends the standard FDR framework by conditioning on auxiliary data to call significant associations, but current implementations are restricted to auxiliary data satisfying specific parametric distributions, typically GWAS p-values for related traits. We relax these distributional assumptions, enabling an extension of the cFDR framework that supports auxiliary covariates from arbitrary continuous distributions (“Flexible cFDR”). Our method can be applied iteratively, thereby supporting multi-dimensional covariate data. Through simulations we show that Flexible cFDR increases sensitivity whilst controlling FDR after one or several iterations. We further demonstrate its practical potential through application to an asthma GWAS, leveraging various functional genomic data to find additional genetic associations for asthma, which we validate in the larger, independent, UK Biobank data resource.  相似文献   

6.
There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).  相似文献   

7.
Deng HW  Chen WM  Recker RR 《Genetics》2001,157(2):885-897
In association studies searching for genes underlying complex traits, the results are often inconsistent, and population admixture has been recognized qualitatively as one major potential cause. Hardy-Weinberg equilibrium (HWE) is often employed to test for population admixture; however, its power is generally unknown. Through analytical and simulation approaches, we quantify the power of the HWE test for population admixture and the effects of population admixture on increasing the type I error rate of association studies under various scenarios of population differentiation and admixture. We found that (1) the power of the HWE test for detecting population admixture is usually small; (2) population admixture seriously elevates type I error rate for detecting genes underlying complex traits, the extent of which depends on the degrees of population differentiation and admixture; (3) HWE testing for population admixture should be performed with random samples or only with controls at the candidate genes, or the test can be performed for combined samples of cases and controls at marker loci that are not linked to the disease; (4) testing HWE for population admixture generally reduces false positive association findings of genes underlying complex traits but the effect is small; and (5) with population admixture, a linkage disequilibrium method that employs cases only is more robust and yields many fewer false positive findings than conventional case-control analyses. Therefore, unless random samples are carefully selected from one homogeneous population, admixture is always a legitimate concern for positive findings in association studies except for the analyses that deliberately control population admixture.  相似文献   

8.
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t''V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups.  相似文献   

9.
Integrating single nucleotide polymorphism (SNP) p-values from genome-wide association studies (GWAS) across genes and pathways is a strategy to improve statistical power and gain biological insight. Here, we present Pascal (Pathway scoring algorithm), a powerful tool for computing gene and pathway scores from SNP-phenotype association summary statistics. For gene score computation, we implemented analytic and efficient numerical solutions to calculate test statistics. We examined in particular the sum and the maximum of chi-squared statistics, which measure the strongest and the average association signals per gene, respectively. For pathway scoring, we use a modified Fisher method, which offers not only significant power improvement over more traditional enrichment strategies, but also eliminates the problem of arbitrary threshold selection inherent in any binary membership based pathway enrichment approach. We demonstrate the marked increase in power by analyzing summary statistics from dozens of large meta-studies for various traits. Our extensive testing indicates that our method not only excels in rigorous type I error control, but also results in more biologically meaningful discoveries.  相似文献   

10.
He Y  Li C  Amos CI  Xiong M  Ling H  Jin L 《PloS one》2011,6(7):e22097
The genome-wide association study (GWAS) has become a routine approach for mapping disease risk loci with the advent of large-scale genotyping technologies. Multi-allelic haplotype markers can provide superior power compared with single-SNP markers in mapping disease loci. However, the application of haplotype-based analysis to GWAS is usually bottlenecked by prohibitive time cost for haplotype inference, also known as phasing. In this study, we developed an efficient approach to haplotype-based analysis in GWAS. By using a reference panel, our method accelerated the phasing process and reduced the potential bias generated by unrealistic assumptions in phasing process. The haplotype-based approach delivers great power and no type I error inflation for association studies. With only a medium-size reference panel, phasing error in our method is comparable to the genotyping error afforded by commercial genotyping solutions.  相似文献   

11.
Phylogenetically closely related species tend to be more similar to each other than to more distantly related ones, a pattern called phylogenetic signal. Appropriate tests to evaluate the association between phylogenetic relatedness and trait variation among species are employed in a myriad of eco-evolutionary studies. However, most tests available to date are only suitable for datasets describing continuous traits, and are most often applicable only for single trait analysis. The Mantel test is a useful method to measure phylogenetic signal for multiple (continuous, binary and/or categorical) traits. However, the classical Mantel test does not incorporate any evolutionary model (EM) in the analysis. Here, we describe a new analytical procedure, which incorporates explicitly an evolutionary model in the standard Mantel test (EM-Mantel). We run numerical simulations to evaluate its statistical properties, under different combinations of species pool size, trait type and number. Our results showed that EM-Mantel test has appropriate type I error and acceptable power, which increases with the strength of phylogenetic signal and with species pool size but depended on trait type. EM-Mantel test is a good alternative for measuring phylogenetic signal in binary and categorical traits and for datasets with multiple traits.  相似文献   

12.
全基因组关联分析(GWAS)是动植物复杂性状相关基因定位的常用手段。高通量基因分型技术的应用极大地推动了GWAS的发展。在植物中, 利用GWAS不仅能够以较高的分辨率在全基因组水平鉴定出各种自然群体特定性状相关的基因或区间, 而且可揭示表型变异的遗传架构全景图。目前, 人们利用GWAS分析方法已在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)和大豆(Glycine max)等模式植物和重要农作物品系中发掘出与各种性状显著相关的数量性状座位(QTL)及其候选基因位点, 阐明了这些性状的遗传基础, 并为揭示这些性状背后的分子机理提供候选基因, 也为作物高产优质品种的选育提供了理论依据。该文对GWAS的方法、影响因素及数据分析流程进行了详细描述, 以期为相关研究提供参考。  相似文献   

13.
为明确银川番茄(Lycopersicon esculentum)是否遭受了番茄斑萎病毒(TSWV)的危害, 采用国家标准TSWV RT- PCR检测技术对银川番茄上采集的14份疑似感染TSWV病叶样本进行分子鉴定, 对克隆得到的核衣壳蛋白基因N (Nucleocapsid)序列进行多序列比对和系统进化树分析, 随后对PCR阳性样本进行蛋白检测。结果表明, 14份病叶样本中有8份扩增出长度为394 bp的TSWV N基因序列, 且8条序列完全一致; 获得的银川番茄TSWV分离物与云南番茄、中国莴苣(Lactuca sativa)、中国鸢尾(Iris tectorum)和重庆辣椒(Capsicum annuum) TSWV分离物相对近缘, 与山东、黑龙江和北京等地及国外TSWV分离物相对远缘; 利用TSWV的抗体通过Western blot对8个PCR阳性样本进一步检测, 结果也证实8个阳性样本中存在TSWV感染。该研究首次通过分子鉴定及蛋白检测证明银川番茄上存在TSWV感染, 需要加快抗TSWV番茄品种的选育工作。  相似文献   

14.
The gene has been proposed as an attractive unit of analysis for association studies, but a simple yet valid, powerful, and sufficiently fast method of evaluating the statistical significance of all genes in large, genome-wide datasets has been lacking. Here we propose the use of an extended Simes test that integrates functional information and association evidence to combine the p values of the single nucleotide polymorphisms within a gene to obtain an overall p value for the association of the entire gene. Our computer simulations demonstrate that this test is more powerful than the SNP-based test, offers effective control of the type 1 error rate regardless of gene size and linkage-disequilibrium pattern among markers, and does not need permutation or simulation to evaluate empirical significance. Its statistical power in simulated data is at least comparable, and often superior, to that of several alternative gene-based tests. When applied to real genome-wide association study (GWAS) datasets on Crohn disease, the test detected more significant genes than SNP-based tests and alternative gene-based tests. The proposed test, implemented in an open-source package, has the potential to identify additional novel disease-susceptibility genes for complex diseases from large GWAS datasets.  相似文献   

15.
The prevailing method of analyzing GWAS data is still to test each marker individually, although from a statistical point of view it is quite obvious that in case of complex traits such single marker tests are not ideal. Recently several model selection approaches for GWAS have been suggested, most of them based on LASSO-type procedures. Here we will discuss an alternative model selection approach which is based on a modification of the Bayesian Information Criterion (mBIC2) which was previously shown to have certain asymptotic optimality properties in terms of minimizing the misclassification error. Heuristic search strategies are introduced which attempt to find the model which minimizes mBIC2, and which are efficient enough to allow the analysis of GWAS data. Our approach is implemented in a software package called MOSGWA. Its performance in case control GWAS is compared with the two algorithms HLASSO and d-GWASelect, as well as with single marker tests, where we performed a simulation study based on real SNP data from the POPRES sample. Our results show that MOSGWA performs slightly better than HLASSO, where specifically for more complex models MOSGWA is more powerful with only a slight increase in Type I error. On the other hand according to our simulations GWASelect does not at all control the type I error when used to automatically determine the number of important SNPs. We also reanalyze the GWAS data from the Wellcome Trust Case-Control Consortium and compare the findings of the different procedures, where MOSGWA detects for complex diseases a number of interesting SNPs which are not found by other methods.  相似文献   

16.
Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Despite remarkable success in uncovering many risk variants and providing novel insights into disease biology, genetic variants identified to date fail to explain the vast majority of the heritability for most complex diseases. One explanation is that there are still a large number of common variants that remain to be discovered, but their effect sizes are generally too small to be detected individually. Accordingly, gene set analysis of GWAS, which examines a group of functionally related genes, has been proposed as a complementary approach to single-marker analysis. Here, we propose a flexible and adaptive test for gene sets (FLAGS), using summary statistics. Extensive simulations showed that this method has an appropriate type I error rate and outperforms existing methods with increased power. As a proof of principle, through real data analyses of Crohn’s disease GWAS data and bipolar disorder GWAS meta-analysis results, we demonstrated the superior performance of FLAGS over several state-of-the-art association tests for gene sets. Our method allows for the more powerful application of gene set analysis to complex diseases, which will have broad use given that GWAS summary results are increasingly publicly available.  相似文献   

17.
Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.  相似文献   

18.
aunak Sen  Frank Johannes    Karl W. Broman 《Genetics》2009,181(4):1613-1626
Selective genotyping and phenotyping strategies are used to lower the cost of quantitative trait locus studies. Their efficiency has been studied primarily in simplified contexts—when a single locus contributes to the phenotype, and when the residual error (phenotype conditional on the genotype) is normally distributed. It is unclear how these strategies will perform in the context of complex traits where multiple loci, possibly linked or epistatic, may contribute to the trait. We also do not know what genotyping strategies should be used for nonnormally distributed phenotypes. For time-to-event phenotypes there is the additional question of choosing follow-up time duration. We use an information perspective to examine these experimental design issues in the broader context of complex traits and make recommendations on their use.  相似文献   

19.

Background

Genome wide association study (GWAS) has been proven to be a powerful tool for detecting genomic variants associated with complex traits. However, the specific genes and causal variants underlying these traits remain unclear.

Results

Here, we used target-enrichment strategy coupled with next generation sequencing technique to study target regions which were found to be associated with milk production traits in dairy cattle in our previous GWAS. Among the large amount of novel variants detected by targeted resequencing, we selected 200 SNPs for further association study in a population consisting of 2634 cows. Sixty six SNPs distributed in 53 genes were identified to be associated significantly with on milk production traits. Of the 53 genes, 26 were consistent with our previous GWAS results. We further chose 20 significant genes to analyze their mRNA expression in different tissues of lactating cows, of which 15 were specificly highly expressed in mammary gland.

Conclusions

Our study illustrates the potential for identifying causal mutations for milk production traits using target-enrichment resequencing and extends the results of GWAS by discovering new and potentially functional mutations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1105) contains supplementary material, which is available to authorized users.  相似文献   

20.
The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry, population-based studies formed with the objective of refining our understanding of the genetic architecture of common traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2 diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly different effect sizes in at least one non-EA population, and these differential effects were most frequent in African Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize more robustly, but the identification of functional variants remains challenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号