首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we have examined the possible role of AMP-activated protein kinase (a key energy sensor) in regulating intracellular protein degradation. We have found that AICAR, a known activator of AMPK, has a dual effect. On one hand, it inhibits autophagy by a mechanism independent of AMPK activity; AICAR decreases class III PI3-kinase binding to beclin-1 and this effect counteracts and reverses the known positive effect of AMPK activity on autophagy. On the other hand, AICAR inhibits the proteasomal degradation of proteins by an AMPK-dependent mechanism. This is a novel function of AMPK that allows the regulation of proteasomal activity under conditions of energy demand.  相似文献   

2.
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway.  相似文献   

3.
We investigated the effects of puerarin, the major isoflavone in Kudzu roots, on the regulation of autophagy in ethanol-treated hepatocytes. Incubation in ethanol (100 mM) for 24 h reduced cell viability by 20% and increased the cellular concentrations of cholesterol and triglycerides by 40% and 20%, respectively. Puerarin stimulation significantly recovered cell viability and reduced cellular lipid accumulation to a level comparable to that in untreated control cells. Ethanol incubation reduced autophagy significantly as assessed by microtubule-associated protein1 light chain 3 (LC3) expression using immunohistochemistry and immunoblot analysis. The reduced expression of LC3 was restored by puerarin in a dose-dependent manner in ethanol-treated cells. The effect of puerarin on mammalian targets of rapamycin (mTOR), a key regulator of autophagy, was examined in ethanol-treated hepatocytes. Immunoblotting revealed that puerarin significantly induced the phosphorylation of 5′AMP-activated protein kinase (AMPK), thereby suppressing the mTOR target proteins S6 ribosomal protein and 4E-binding protein 1. These data suggest that puerarin restored the viability of cells and reduced lipid accumulation in ethanol-treated hepatocytes by activating autophagy via AMPK/mTOR-mediated signaling.  相似文献   

4.
目的探讨吴茱萸碱对破骨细胞分化与骨吸收功能的调控及对骨质疏松症的治疗作用。 方法取小鼠原代骨髓来源巨噬细胞分别给予0、10、20、50、100、200 μmol/L吴茱萸碱处理,CCK8检测细胞活力;然后利用原代骨髓来源巨噬细胞给予小鼠重组可溶性核因子κB受体活化因子配体与集落刺激因子行破骨细胞分化诱导,分别给予20与50 μmol/L吴茱萸碱干预。抗酒石酸酸性磷酸酶(TRAP)染色检测破骨细胞形成能力,荧光定量PCR分析破骨细胞分化相关基因表达,免疫荧光检测F肌动蛋白(F-actin)形成,扫描电镜观察破骨细胞骨吸收能力。7月龄C57BL/6小鼠灌胃给予100与200 mg/kg吴茱萸碱,给药3个月后Micro-CT检测小鼠骨密度与骨质量。采用单因素方差分析和t检验进行统计学分析。 结果CCK8结果显示,与对照组相比,给予10、20、50、100 μmol/L吴茱萸碱处理后细胞活力无明显变化,差异无统计学意义(P > 0.05);而给予200 μmol/L吴茱萸碱的细胞活力下降(100.64±0.18比47.54±5.58),差异具有统计学意义(P < 0.01)。与对照组相比,20 μmol/L吴茱萸碱的TRAP染色阳性细胞数[(200.57±28.35)比(142.29±19.21)个]、Trap (1.00±0.13比0.55±0.16)、组织蛋白酶K(Ctsk) (1.01±0.17比0.59±0.11)mRNA水平、骨吸收面积比(1.00±0.15比0.79±0.19)均减少,差异有统计学意义(P < 0.05)。与对照组相比,50 μmol/L吴茱萸碱的TRAP阳性细胞数[(200.57±28.35)比(112.71±12.18)个]、Trap (1.00±0.13比0.46±0.17)、Ctsk(1.01±0.17比0.49±0.12)、树突状细胞-特异性跨膜蛋白(DC- Stamp) (1.00±0.10比0.55±0.14)、c-Fos (1.01±0.10比0.58±0.14)、活化T细胞核因子c1 (Nfatc1) (1.00±0.10比0.59±0.14)、H+转运ATP酶v0亚基d2 (Atp6v0d2)的mRNA表达(1.00±0.10比0.59±0.18)、F-actin数量[(165.00± 18.50)比(98.33±21.15)个]和骨吸收面积比(1.00±0.15比0.62±0.10)均降低,差异有统计学意义(P < 0.05)。Micro-CT结果显示,与生理盐水组相比,100 mg/kg吴茱萸碱组小鼠骨密度有一定升高[(0.19±0.03)比(0.21±0.01)g/cm3],但差异无统计学意义(P > 0.05);与生理盐水组相比,200 mg/kg吴茱萸碱组小鼠胫骨的骨密度[(0.19±0.03)比(0.23±0.01)g/cm3]、骨体积比[(9.79±1.39)﹪比(11.62±1.18)﹪]、骨小梁数量[(2.43±0.29)比(3.08±0.43)/mm]上升,骨小梁分离度[(0.44±0.06)比(0.27±0.05)mm]下降,差异具有统计学意义(P < 0.05)。 结论吴茱萸碱通过抑制破骨细胞分化与骨吸收功能延缓小鼠骨量丢失。  相似文献   

5.
Death-associated protein kinase 2 (DAPK2/DRP-1) belongs to a family of five related serine/threonine kinases that mediate a range of cellular processes, including membrane blebbing, apoptosis, and autophagy, and possess tumour suppressive functions. The three most conserved family members DAPK1/DAPK, DAPK2 and DAPK3/ZIPK share a high degree of homology in their catalytic domain, but differ significantly in their extra-catalytic structures and tissue-expression profiles. Hence, each orthologue binds to various unique interaction partners, localizes to different subcellular regions and controls some dissimilar cellular functions. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms that activate DAPK2 and that execute DAPK2-mediated apoptosis, autophagy and inflammation. In this “molecules in focus” review on DAPK2, the structure, modes of regulation and various cellular functions of DAPK2 will be summarized and discussed.  相似文献   

6.
AMP-activated protein kinase (AMPK) activators are known to increase energy metabolism and to reduce body weight, as well as to improve glucose uptake. During for searching AMPK activators, a new anthraquinone, modasima A (10), along with eighteen known analogues (19 and 1119) were isolated from an ethanol extract of the roots of Morinda longissima Y. Z. Ruan (Rubiaceae). Using the fluorescent tagged glucose analogues, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose (2-NBDG), insulin mimetics were screened with compounds 119 in 3T3-L1 adipocytes. Among them, compounds 2, 8 and 10 enhanced significantly glucose uptake into adipocytes and up-regulated the phosphorylated AMPK (Thr172) whereas the glucose uptake enhancing activities of compounds 2, 8 and 10 were abrogated by treatment of compound C, an AMPK inhibitor. Taken together, these anthraquinones showed the potential action as insulin mimetic to improve glucose uptake via activation of AMPK.  相似文献   

7.
Activation of AMP-activated protein kinase (AMPK), a heterotrimeric energy-sensing protein, decreases lipid synthesis in liver tissue of various species; however, little is known about the role of AMPK in the regulation of fatty acid synthesis in bovine mammary epithelial cells. Here we report the presence of AMPK mRNA in MAC-T bovine mammary epithelial cells and mammary gland. Treatment of MAC-T with an AMPK activator dramatically decreased de novo fatty acid synthesis by inactivating acetyl-CoA carboxylase-α. Activation of AMPK also modified the mRNA expression of several lipogenic genes including fatty acid synthase, glycerol-3-phosphate acyltransferase, and fatty acid binding protein-3. Additionally, decreases in energy availability or rises in intracellular Ca2+ most likely activated AMPK in MAC-T. These data suggest the presence of LKB1 and Ca2+/calmodulin-dependent kinase kinase, two known AMPK kinases, in MAC-T. Identifying AMPK as a molecular target capable of modifying energy substrate utilization may result in the development of new technologies that increase milk production or modify milk composition during periods of increased energy demand.  相似文献   

8.
9.
Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functional roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na+/H+ exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-κB ligand signaling and is required for OC differentiation and survival.  相似文献   

10.
11.
Ischemic heart disease is the major cause of death in Western countries. CTRP9 (C1q/TNF-related protein 9) is a fat-derived plasma protein that has salutary effects on glucose metabolism and vascular function. However, the functional role of CTRP9 in ischemic heart disease has not been clarified. Here, we examined the regulation of CTRP9 in response to acute cardiac injury and investigated whether CTRP9 modulates cardiac damage after ischemia and reperfusion. Myocardial ischemia-reperfusion injury resulted in reduced plasma CTRP9 levels and increased plasma free fatty acid levels, which were accompanied by a decrease in CTRP9 expression and an increase in NADPH oxidase component expression in fat tissue. Treatment of cultured adipocytes with palmitic acid or hydrogen peroxide reduced CTRP9 expression. Systemic administration of CTRP9 to wild-type mice, before the induction of ischemia or at the time of reperfusion, led to a reduction in myocardial infarct size following ischemia-reperfusion. Administration of CTRP9 also attenuated myocyte apoptosis in ischemic heart, which was accompanied by increased phosphorylation of AMP-activated protein kinase (AMPK). Treatment of cardiac myocytes with CTRP9 protein reduced apoptosis in response to hypoxia/reoxygenation and stimulated AMPK phosphorylation. Blockade of AMPK activity reversed the suppressive actions of CTRP9 on cardiomyocyte apoptosis. Knockdown of adiponectin receptor 1 diminished CTRP9-induced increases in AMPK phosphorylation and survival of cardiac myocytes. Our data suggest that CTRP9 protects against acute cardiac injury following ischemia-reperfusion via an AMPK-dependent mechanism.  相似文献   

12.
Approximately 90% of non-medullary thyroid malignancies originate from the follicular cell and are classified as papillary or follicular (well-differentiated) thyroid carcinomas, showing an overall favourable prognosis. However, recurrence or persistence of the disease occurs in some cases associated with the presence of loco-regional or distant metastatic lesions that generally become resistant to radioiodine therapy, while glucose uptake and metabolism are increased. Recent advances in the field of tumor progression have shown that CTC (circulating tumour cells) are metabolic and genetically heterogeneous. There is now special interest in unravelling the mechanisms that allow the reminiscence of dormant tumour lesions that might be related to late disease progression and increased risk of recurrence. AMPK (AMP-activated protein kinase) is activated by the depletion in cellular energy levels and allows adaptive changes in cell metabolism that are fundamental for cell survival in a stressful environment; nevertheless, the activation of this kinase also decreases cell proliferation rate and induces tumour cell apoptosis. In the thyroid field, AMPK emerged as a novel important intracellular pathway, since it regulates both iodide and glucose uptakes in normal thyroid cells. Furthermore, it has recently been demonstrated that the AMPK pathway is highly activated in papillary thyroid carcinomas, although the clinical significance of these findings remains elusive. Herein we review the current knowledge about the role of AMPK activation in thyroid physiology and pathophysiology, with special focus on thyroid cancer.  相似文献   

13.
We previously described the adipokine CTRP1, which has up-regulated expression following exposure to the anti-diabetic drug rosiglitazone and increased circulating levels in adiponectin-null mice (Wong, G. W., Krawczyk, S. A., Kitidis-Mitrokostas, C., Revett, T., Gimeno, R., and Lodish, H. F. (2008) Biochem. J. 416, 161-177). Although recombinant CTRP1 lowers blood glucose in mice, its physiological function, mechanisms of action, and roles in metabolic stress remain unknown. Here, we show that circulating levels of CTRP1 are strikingly reduced in diet-induced obese mice. Overexpressing CTRP1 in transgenic mice improved insulin sensitivity and decreased high-fat diet-induced weight gain. Reduced adiposity resulted from enhanced fatty acid oxidation and energy expenditure, effects mediated by AMP-activated protein kinase (AMPK). In skeletal muscle of transgenic mice, AMPKα and its downstream target, acetyl-CoA carboxylase (ACC), were hyperphosphorylated, indicative of AMPK activation and ACC inhibition. Inactivation of ACC promotes mitochondrial fat oxidation. Consistent with the direct effect of CTRP1 on AMPK signaling, recombinant CTRP1 administration acutely stimulated muscle AMPKα and ACC phosphorylation in vivo. In isolated soleus muscle, recombinant CTRP1 activated AMPK signaling to increase fatty acid oxidation ex vivo, an effect abrogated by an AMPK inhibitor. These results provide the first in vivo evidence that CTRP1 is a novel regulator of fatty acid metabolism.  相似文献   

14.
Son  You Hwa  Moon  Seong Hee  Kim  Jiyeon 《Molecules and cells》2013,36(5):417-423
Drug repositioning can identify new therapeutic applications for existing drugs, thus mitigating high R&D costs. The Protein kinase 2 (CK2) inhibitor CX-4945 regulates human cancer cell survival and angiogenesis. Here we found that CX-4945 significantly inhibited the RANKL-induced osteoclast differentiation, but enhanced the BMP2-induced osteoblast differentiation in a cell culture model. CX-4945 inhibited the RANKL-induced activation of TRAP and NFATc1 expression accompanied with suppression of Akt phosphorylation, but, in contrast, it enhanced the BMP2-mediated ALP induction and MAPK ERK1/2 phosphorylation. CX-4945 is thus a novel drug candidate for bone-related disorders such as osteoporosis.  相似文献   

15.
16.
X-Adrenoleukodystrophy (X-ALD) is a peroxisomal disorder characterized by accumulation of very-long-chain (VLC) fatty acids, which induces inflammatory disease and alterations in cellular redox, both of which are reported to play a role in the pathogenesis of the severe form of the disease (childhood cerebral ALD). While the mutation defect in ABCD1 gene is common to all forms of X-ALD it fails to account for the spectrum of phenotypic variability seen in X-ALD patients, strongly suggesting a role for as yet unidentified modifier gene(s). Here we report, for the first time, loss of AMP-activated protein kinase alpha1 (AMPKα1) in patient-derived fibroblasts and lymphocytes of the severe cerebral form of X-ALD (ALD), and not in the milder adrenomyeloneuropathy (AMN) form. Decrease in AMPK was observed at both protein and mRNA levels. AMPK loss in ALD patient-derived fibroblasts was associated with increased ubiquitination. Using the Seahorse Bioscience XFe96 Flux Analyzer for measuring the mitochondrial oxygen consumption and extracellular acidification rate we show that ALD patient-derived fibroblasts have a significantly lower “metabolic state” than AMN fibroblasts. Unstimulated ALD patient-derived lymphocytes had significantly higher proinflammatory gene expression. Selective AMPK loss represents a novel physiopathogenic factor in X-ALD disease mechanism. Strategies aimed at upregulating/recovering AMPK levels might have beneficial therapeutic effects in X-ALD.  相似文献   

17.
Kim K  Kim JH  Moon JB  Lee J  Kwak HB  Park YW  Kim N 《Molecules and cells》2012,33(4):401-406
RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein we investigate the role of the transmembrane adaptor proteins in RANKL-induced osteoclastogenesis. LAT positively regulates osteoclast differentiation and is up-regulated by RANKL via c-Fos and NFATc1, whereas LAB and LIME act as negative modulators of osteoclastogenesis. In addition, silencing of LAT by RNA interference or overexpression of a LAT dominant negative in bone marrow-derived macrophage cells attenuates RANKL-induced osteoclast formation. Furthermore, LAT is involved in RANKL-induced PLC(γ) activation and NFATc1 induction. Thus, our data suggest that LAT acts as a positive regulator of RANKL-induced osteoclastogenesis.  相似文献   

18.
The 5'-nucleotidase (NT5) family of enzyme dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of NT5 enzymes to increase the intracellular availability of AMP would increase AMP-activated protein kinase (AMPK) activity and metabolism. We determined the role of cytosolic NT5 in metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in the AMP/ATP ratio, a 2.4-fold increase in AMPK phosphorylation (Thr(172)), and a 2.8-fold increase in acetyl-CoA carboxylase phosphorylation (Ser(79)) (p < 0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation by 2-fold in the absence and by 8-fold in the presence of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This was paralleled by an increase in glucose transport and a decrease in glucose oxidation, incorporation into glycogen, and lactate release from NT5C2-depleted myotubes. Gene silencing of NT5C1A by shRNA injection and electroporation in mouse tibialis anterior muscle reduced protein content (60%; p < 0.05) and increased phosphorylation of AMPK (60%; p < 0.05) and acetyl-CoA carboxylase (50%; p < 0.05) and glucose uptake (20%; p < 0.05). Endogenous expression of NT5C enzymes inhibited basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5'-nucleotidase expression or activity may promote metabolic flexibility in type 2 diabetes.  相似文献   

19.
Extensive studies over the years have shown that the AMP-activated kinase (AMPK) exhibits negative regulatory effects on the activation of the mammalian target of rapamycin (mTOR) signaling cascade. We examined the potential involvement of AMPK in the regulation of growth and survival of malignant melanoma cells. In studies using the AMPK activators AICAR or metformin, we found potent inhibitory effects of AMPK activity on the growth of SK-MEL-2 and SK-MEL-28 malignant melanoma cells. Induction of AMPK activity was also associated with inhibition of the ability of melanoma cells to form colonies in an anchorage-independent manner in soft agar, suggesting an important role of the pathway in the control of malignant melanoma tumorigenesis. Furthermore, AICAR-treatment resulted in malignant melanoma cell death and such induction of apoptosis was further enhanced by concomitant statin-treatment. Taken together, our results provide evidence for potent inhibitory effects of AMPK on malignant melanoma cell growth and survival and raise the potential of AMPK manipulation as a novel future approach for the treatment of malignant melanoma.  相似文献   

20.
Background and Aim: Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, is very critical to health maintenance, for a wide range of human chronic diseases, including cancers. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. This study was designed to explore whether PAH prevents gastric cancer growth and to investigate the molecular mechanism. Methods and Results: In cultured mouse gastric cancer cell line MFCs and human gastric cancer cell lines GC9811-P, PAH activated AMPK by increasing the Thr172 phosphorylation and activity in a time-/concentration-dependent manner. Furthermore, incubation of MFCs with PAH also increased autophagy as determined by monodansylcadaverine (MDC) staining, which was reversed by AMPK inhibitor compound C. PAH further decreased MFCs cell survival, which was abolished by compound C or autophagy inhibitor 3-Methyladenine (3-MA). In vivo studies indicated that 4-week administration of PAH (100 mg/kg/day) suppressed the growth of gastric cancer and increased the levels of autophagy-related proteins, including beclin-1, LC3-II, cathepsin, caspase-3, p53, and cathepsin in tumors isolated from the xenograft model of gastric cancer in mice. Moreover, these anticancer effects produced by PAH were abolished by coadministration of compound C or 3-MA in vivo. Conclusions: PAH increases AMPK phosphorylation and activity to induce gastric cancer cell autophagy to inhibit the growth of gastric cancer. In perspective, therapy of PAH should be applied to treat patients with gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号