首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

2.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

3.
Aim   We seek to determine the factors which control the success of lianas across macroecological gradients. Lianas have a strong impact on the growth, mortality and biomass of tropical trees, and are reported to be increasing in dominance, so understanding their behaviour is important from the perspectives of both ecological and global change.
Location   Lowland and montane Neotropical forests.
Methods   Using 65 standardized samples of lianas (≥ 2.5 cm diameter) from across the Neotropics, we attempted to account for characteristics of both the environment and the forest in explaining macroecological variation in liana success in Neotropical forests, using regression analyses and structural equation modelling.
Results   We found that both liana density and basal area were unrelated to mean annual precipitation, dry season length or soil variables, except for a weak effect of mean annual precipitation on liana basal area. Structural characteristics of the forest explained more of the variation in liana density and basal area than the physical environment. More disturbed forests generally tended to have a higher liana density. Liana basal area, however, was highest in undisturbed forests.
Main conclusions   The availability of host trees and their characteristics may be more important than the direct effects of the physical environment in controlling the success of lianas in Neotropical forests. Changes to the tropical climate in the coming century may not strongly affect lianas directly, but could have very substantial indirect effects via changes in tree community structure and dynamics.  相似文献   

4.
Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana‐induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2. We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co‐occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open‐top growth chambers maintained at ambient or twice‐ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics.  相似文献   

5.
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling.  相似文献   

6.
Lianas are an important component of Neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P 50) and maximum hydraulic conductivity (K h), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.  相似文献   

7.
Proliferation of lianas in canopy gaps can restrict tree regeneration in tropical forests through competition. Liana effects may differ between tree species, depending on tree requirements for above- and below-ground resources. We conducted an experiment in a shade house over 12 months to test the effect of light (7 and 27% external irradiance) on the competitive interactions between seedlings of one liana species and three tree species and the contribution of both above- and below-ground competition. Seedlings of the liana Acacia kamerunensis were grown with tree seedlings differing in shade tolerance: Nauclea diderrichii (Pioneer), Khaya anthotheca (Non-Pioneer Light Demander) and Garcinia afzelii (Non-Pioneer Shade Bearer). Trees were grown in four competition treatments with the liana: no competition, root competition, shoot competition and root and shoot competition. Both root and root–shoot competition significantly reduced relative growth rates in all three tree species. After one year, root–shoot competition reduced growth in biomass to 58% of those (all species) grown in no competition. The root competition treatment had a more important contribution in the effect of the liana on tree growth. Tree seedlings did not respond to competition with the liana by altering their patterns of biomass allocation. Although irradiance had a great effect on tree growth and allocation of biomass, the interaction between competition treatments and irradiance was not significant. Nauclea diderrichii, the tree species which responded most to the effects of competition, showed signs of being pot-bound, the stress of which may have augmented the competition effects. The understanding of the interaction of above- and below-ground competition between lianas and trees and its moderation by the light environment is important for a proper appreciation of the influence of lianas on tropical forest regeneration.  相似文献   

8.
Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (?30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (?19%) and ecosystem (?7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.  相似文献   

9.
There is mounting empirical evidence that lianas affect the carbon cycle of tropical forests. However, no single vegetation model takes into account this growth form, although such efforts could greatly improve the predictions of carbon dynamics in tropical forests. In this study, we incorporated a novel mechanistic representation of lianas in a dynamic global vegetation model (the Ecosystem Demography Model). We developed a liana‐specific plant functional type and mechanisms representing liana–tree interactions (such as light competition, liana‐specific allometries, and attachment to host trees) and parameterized them according to a comprehensive literature meta‐analysis. We tested the model for an old‐growth forest (Paracou, French Guiana) and a secondary forest (Gigante Peninsula, Panama). The resulting model simulations captured many features of the two forests characterized by different levels of liana infestation as revealed by a systematic comparison of the model outputs with empirical data, including local census data from forest inventories, eddy flux tower data, and terrestrial laser scanner‐derived forest vertical structure. The inclusion of lianas in the simulations reduced the secondary forest net productivity by up to 0.46 tC ha?1 year?1, which corresponds to a limited relative reduction of 2.6% in comparison with a reference simulation without lianas. However, this resulted in significantly reduced accumulated above‐ground biomass after 70 years of regrowth by up to 20 tC/ha (19% of the reference simulation). Ultimately, the simulated negative impact of lianas on the total biomass was almost completely cancelled out when the forest reached an old‐growth successional stage. Our findings suggest that lianas negatively influence the forest potential carbon sink strength, especially for young, disturbed, liana‐rich sites. In light of the critical role that lianas play in the profound changes currently experienced by tropical forests, this new model provides a robust numerical tool to forecast the impact of lianas on tropical forest carbon sinks.  相似文献   

10.
Lianas (woody vines) can have profound effects on tree recruitment, growth, survival, and diversity in tropical forests. However, the dynamics of liana colonization soon after land abandonment are poorly understood, and thus it is unknown whether lianas alter tree regeneration early in succession. We examined the liana community in 43 forests that ranged from 1 to 31 yr old in central Panama to determine how fast lianas colonize young forests and how the liana community changes with forest succession. We found that lianas reached high densities early in succession, commonly exceeding 1000 stems/ha within the first 5 yr of forest regeneration. Lianas also increased rapidly during early succession in terms of basal area but did not show evidence of saturation within the 30 yr of our chronosequence. The relative contribution of lianas to total woody plant community in terms of basal area and density increased rapidly and reached a saturation point within 5 yr (basal area) to 15 yr (density) after land abandonment. Our data demonstrate that lianas recruit early and in high density in tropical forest regeneration, and thus lianas may have a large effect on the way in which secondary forests develop both early and throughout succession.  相似文献   

11.
In tropical forest, landscape fragmentation and the consequent degradation of disturbed forests increase the incidence of light and dry hot winds, causing a disturbance on natural regeneration. Under these conditions, lianas (woody vines) development is stimulated instead of other species, which are more suited to mature forest and under less influence of the edge effect. For this, lianas colonization is an important variable for assessing the disturbance level of a forest. In this context, it becomes important to understand the nature of the competitive relationships between hyper-abundant lianas and ring growth of the host trees. Here, we selected trees with occupation or absence of lianas from two tropical species – Pinus caribaea var. hondurensis (Caribbean pine) and Tectona grandis (teak) – localized in a semideciduous forest fragment in southeastern Brazil, aiming to compare growth, climatic response, anatomy (vessels and intra-annual density fluctuations), wood density and carbon, by tree-ring analysis. The results showed that the lianas caused a change in tree-ring anatomy of host trees in last 10 years, mainly. We observed that trees occupied by lianas had a decrease the radial growth and carbon in the two species, an increase of the vessels size in teak and a decrease of the IADF frequency in Caribbean pine. In teak, the climate-tree relationship indicated that trees with lianas had lower response to rainfall and higher response to temperature in the summer (rainy and hottest period); in Caribbean pine, we observed that trees with lianas had a 2-month delay in the radial growth response to rainfall in the dry season. In the teak group, we observed that host trees had higher wood density values than liana-free tree in the outer rings, and the opposite was showed for pine. These findings show that tree-ring growth of host trees are a strong bioindicator of forest disturbance caused by aggressive colonization of lianas. We believe that these methods are applicable to future studies relating to the effects of habitat fragmentation and forest degradation on biodiversity and ecosystem services, particularly in the context of global climate change.  相似文献   

12.
木质藤本是生物多样性的重要组成,木质藤本通过影响支持木进而影响群落的结构和功能,但在生物多样性丰富的北热带喀斯特森林中,木质藤本与支持木的关系鲜为人知。以喀斯特季节性雨林的五桠果叶木姜子(Litsea dilleniifolia)群落为研究对象,对木质藤本的密度、分布格局及其与主要树种的关系进行调查研究,分析木质藤本对树木的影响。结果显示:(1)五桠果叶木姜子群落内木质藤本平均密度为0.0913株/m2,木质藤本在0-20m空间尺度整体表现为聚集分布,且随着尺度增大,聚集强度逐渐减弱;不同径级木质藤本在不同尺度上的分布格局不同。(2)木质藤本对不同径级、不同种类、不同聚集强度的支持木选择表现以下体征:随着支持木径级增加,木质藤本攀附的比例和每木藤本数有增加趋势,且木质藤本胸径与支持木胸径呈极显著正相关;附藤率较高的支持木有紫葳科(Bignoniaceae)种类和东京桐(Deutzianthus tonkinensis),单木附藤数量多的是南方紫金牛(Ardisia thyrsiflora);物种的聚集强度与附藤率、附藤数量呈负相关。(3)木质藤本的密度与支持木死亡率关系不显著,而物种的附藤率与死亡率呈极显著负相关。以上结果表明,木质藤本密度在原生性喀斯特季节性雨林中并不高,且木质藤本对支持木具有选择性,但其对五桠果叶木姜子群落的死亡率并未产生显著影响。该研究可为喀斯特原生性季节性雨林的物种共存、极小植物种群保育提供理论依据,也可为石漠化区域的植被修复提供科学参考。  相似文献   

13.
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.  相似文献   

14.
Aim Insect assemblages associated with lianas in tropical forests are poorly studied compared with those associated with trees. The importance of lianas for the maintenance of local species richness of insect herbivores in tropical forests is therefore poorly understood. With this in mind, a comparative study of the relative importance of trees and lianas as hosts for phytophagous beetles was carried out. Location The study area was located in the canopy of a dry tropical forest in Parque Natural Metropolitano, Panama province, Republic of Panama. Methods A crane system was utilized to access the canopy. The number of species and host specialization of adult phytophagous beetles associated with twenty‐six liana species of ten different families, and twenty‐four tree species of twelve different families were compared. Results A total of 2561 host associations of 697 species of beetles were determined (1339 for trees and 1222 for lianas). On average 55.8 ± 6.8 beetle species were found to be associated with each tree species while the comparable number for lianas was 47.0 ± 6.1. The pooled numbers of phytophagous beetle species associated with trees and lianas, respectively, were not significantly different. However, there were significantly more species feeding on green plant parts on lianas than on trees, and there were significantly more wood eaters on trees than on lianas. Phytophagous beetles associated with lianas were significantly more specialized than the tree associates due to a higher degree of specialization among the species feeding on green plant parts of lianas. Wood eaters and flower visitors showed no differences in host specialization on different growth forms. Main conclusion The present study shows that lianas are at least as important as trees for the maintenance of local species diversity of phytophagous beetles at this site. The mechanisms that drive the patterns can only be hypothesized. Plant architecture, size, and length of growing season are probably involved. Further studies, should include measurements of plant traits to elucidate experimentally what mechanisms that drive the patterns. Additional insight would come from similar studies in other forest types, and also studies of other major taxonomic groups of arthropod herbivores.  相似文献   

15.
刘晋仙  陶建平  何泽  王玉平  郭庆学 《生态学报》2012,32(12):3834-3840
通过对海南霸王岭热带山地原始林与伐后林中树木及其攀附木质藤本的调查,研究原始林与伐后林中木质藤本对支持木的选择性。结果表明:1)6科优势树木中附藤率最高的是野牡丹科(Melastomataceae),附藤率最低的科,原始林中是山矾科(Symplocaceae),伐后林中是茜草科(Rubiaceae)。2)原始林中,谷木(Memecylon ligustrifolium)与线枝蒲桃(Syzygiumaraiocladum)的附藤比率和每木藤本数均高于样地平均水平;三角瓣花(Prismatomeris tetrandra)和龟背灰木(Symplocosandenophylla)的附藤比率均低于样地平均水平,而每木藤本数与样地平均水平之间没有显著差异。伐后林中,谷木的附藤比率和每木藤本数高于样地平均水平;九节(Psychotria rubra)的附藤比率和每木藤本数低于样地平均水平。3)杜仲藤(Parabariummicranthum)的主要支持木是谷木,夜花藤(Hypserpa nitida)的主要支持木是线枝蒲桃。研究表明,木质藤本对支持木在科和种水平上都具有选择性,因此木质藤本会对树木造成不对称影响,进而影响森林的结构和动态。  相似文献   

16.
两种光强下木质藤本与树木幼苗的竞争关系   总被引:5,自引:1,他引:5       下载免费PDF全文
 为了探讨木质藤本和树木幼苗的相互作用关系,对两种光强(4%和35%的光强)、4种竞争处理下(全竞争、地上竞争、地下竞争和无竞争),一种 需光木质藤本(刺果藤(Byttneria grandifolia))和3个树种(耐荫种:五桠果木姜子(Litsea dilleniifolia)和绒毛番龙眼(Pometia tomentosa);需光种:羊蹄甲(Bauhinia variegata))幼苗的地上部分和地下部分的竞争关系进行了研究。结果表明:木质藤本的竞争显著影响 着3种树木幼苗的光合能力、形态特征和生长,但生长环境的不同光强影响地上部分竞争和地下部分竞争的相对强度。在低光下,地上部分竞争 比地下部分竞争对3种树木幼苗的相对生长速率(Relative growth rate,RGR)和光合能力造成更大的影响;而高光下,地下竞争对树木幼苗的 生长有更强的抑制作用。不同的竞争处理和光强对树木幼苗的生物量积累造成显著的影响。光强对3种树种的比叶面积(Specific leaf area, SLA)和叶面积比(Leaf area ratio,LAR)有显著的抑制作用,但竞争只对需光的羊蹄甲的SLA和LAR有显著影响。不同的光照和竞争处理之间, 同种植物表现出不同的表型特征。由于竞争的影响,苗木在形态上较为矮小、叶片数目较少、叶面积减小,但是长细比改变较少 。  相似文献   

17.
In three forests that differed in annual rainfall and seasonality, the probability of a liana with a stem ≥2.0 cm stem diameter reaching the canopy was >50 percent. Lianas reached the canopy at significantly smaller size‐classes (1.5 cm) in the wet aseasonal forest, suggesting that this estimate changes with forest type. Nevertheless, as a general rule, we suggest that 2.0 cm is the minium stem diameter to examine the abundance and diversity of canopy lianas or canopy competition between lianas and trees.  相似文献   

18.
Lianas are an important component of tropical forests; they alter tree mortality and recruitment and impact biogeochemical cycling. Recent evidence suggests that the abundance of lianas in tropical forests is increasing. To understand and predict the effect of lianas on ecosystem processes in tropical forests, it is important to understand the mechanisms through which they compete with trees. In this study, we investigated the functional traits of lianas and trees in a lowland tropical forest in northeast Queensland, Australia. The site is located at 16.1° south latitude and experiences significant seasonality in rainfall, with pronounced wet and dry seasons. It is also subject to relatively frequent disturbance by cyclones. We asked the question of whether the canopy liana community at this site would display functional traits consistent with a competitive advantage over trees in response to disturbance, or in response to dry season water stress. We found that traits that we considered indicative of a dry season advantage (xylem water δ18O as an indicator of rooting depth; leaf and stem tissue δ13C and instantaneous gas exchange as measures of water‐use efficiency) did not differ between canopy lianas and canopy trees. On the other hand, lianas differed from trees in traits that should confer an advantage in response to disturbance (low wood density; low leaf dry matter content; high leaf N concentration; high mass‐based photosynthetic rates). We conclude that the liana community at the study site expressed functional traits geared towards rapid resource acquisition and growth in response to disturbance, rather than outcompeting trees during periods of water stress. These results contribute to a body of literature which will be useful for parameterising a liana functional type in ecosystem models.  相似文献   

19.
Lianas are a quintessential feature of tropical forests and are often perceived as being poorly studied. However, liana removal studies may be one of the most common experimental manipulations in tropical forest ecology. In this review, we synthesize data from 64 tropical liana removal experiments conducted over the past 90 yr. We explore the direction and magnitude of the effects of lianas on tree establishment, growth, survival, reproduction, biomass accretion, and plant and animal diversity in ecological and forestry studies. We discuss the geographical biases of liana removal studies and compare the various methods used to manipulate lianas. Overall, we found that lianas have a clear negative effect on trees, and trees benefitted from removing lianas in nearly every study across all forest types. Liana cutting significantly increased light and water availability, and trees responded with vastly greater reproduction, growth, survival, and biomass accumulation compared to controls where lianas were present. Removing lianas during logging significantly reduced damage of future merchantable trees and improved timber production. Our review demonstrates that lianas have an unequivocally detrimental effect on every metric of tree performance measured, regardless of forest type, forest age, or geographic location. However, lianas also appear to have a positive contribution to overall forest plant diversity and to different animal groups. Therefore, managing lianas reduces logging damage and improves timber production; however, the removal lianas may also have a negative effect on the faunal community, which could ultimately harm the plant community.  相似文献   

20.
Intense competition with lianas (wood climbers) can limit tree growth, reproduction, and survival. However, the negative effects of liana loads on tree allometry have not yet been addressed. We investigated the hypothesis that liana loading on tree crown alters tree’s allometry, expressed through slenderness (height–diameter ratio). The relationship between trunk slenderness and percentage of tree crown covered by lianas was investigated for 12 tree species from 10 fragments of the Semideciduous Seasonal Forest in Southeastern Brazil. We also tested whether the relationship between slenderness and wood density differ between trees without lianas and trees heavily infested. Liana loads significantly altered tree allometry by decreasing slenderness, even when lianas covered less than 25% of tree crown. Heavy-wood species decreased their trunk slenderness in a greater ratio than light-wood species. Our findings indicate that liana infestation shifts tree allometry, and these effects are stronger on heavy-wood tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号