首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Little is known about how tropical land-use systems contribute to the conservation of functionally important insect groups, including dung beetles. In a study at the margin of Lore Lindu National Park (a biodiversity hotspot in Central Sulawesi, Indonesia) dung-beetle communities were sampled in natural forest, young secondary forest, agroforestry systems (cacao plantations with shade trees) and annual cultures (maize fields), each with four replicates (n = 16 sites). At each site we used 10 pitfall traps, baited with cattle dung, along a 100 m transect for six 3-day periods. The number of trapped specimens and species richness at the natural forest sites was higher than in all land-use systems, which did not significantly differ. Each land-use system contained, on average, 75% of the species richness of the natural forest, thereby indicating their importance for conservation. However, a two-dimensional scaling plot based on NESS indices (m = 6) indicated distinct dung beetle communities for both forest types, while agroforestry systems and annual cultures exhibited a pronounced overlap. Mean body size of dung beetles was not significantly influenced by land-use intensity. Five of the six most abundant dung beetle species were recorded in all habitats, whereas the abundance of five other species was significantly related to habitat type. Mean local abundance and number of occupied sites were closely correlated, further indicating little habitat specialisation. The low dung beetle diversity (total of 18 recorded species) may be due to the absence of larger mammals in Sulawesi during historical times, even though Sulawesi is the largest island of Wallacea. In conclusion, the dung beetle fauna of the lower montane forest zone in Central Sulawesi appears to be relatively robust to man-made habitat changes and the majority of species did not exhibit strong habitat preferences.  相似文献   

2.
Monoculture croplands are a major source of global anthropogenic emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to ozone depletion. Agroforestry has the potential to reduce N2O emissions. Presently, there is no systematic comparison of soil N2O emissions between cropland agroforestry and monoculture systems in Central Europe. We investigated the effects of converting the monoculture cropland system into the alley cropping agroforestry system on soil N2O fluxes at three sites (each site has paired agroforestry and monoculture) in Germany, where agroforestry combined crop rows and poplar short-rotation coppice (SRC). We measured soil N2O fluxes monthly over 2 years (March 2018–January 2020) using static vented chambers. Annual soil N2O emissions from agroforestry ranged from 0.21 to 2.73 kg N ha−1 year−1, whereas monoculture N2O emissions ranged from 0.34 to 3.00 kg N ha−1 year−1. During the rotation of corn crop, with high fertilization rates, agroforestry reduced soil N2O emissions by 9% to 56% compared to monocultures. This was mainly caused by low soil N2O emissions from the unfertilized agroforestry tree rows. Soil N2O fluxes were predominantly controlled by soil mineral N in both agroforestry and monoculture systems. Our findings suggest that optimized fertilizer input will further enhance the potential of agroforestry for mitigating N2O emissions.  相似文献   

3.
Jan Frouz 《Biologia》2008,63(2):249-253
Field microcosms consisting of mineral soil (spoil substrate) and two types of litter taken either from an unreclaimed site with spontaneously developed vegetation (mostly Salix caprea) or from an alder plantation (a mixture of Alnus glutinosa and A. incana) were exposed in spontaneously developed or reclaimed sites at a post-mining heap near Sokolov (Czech Republic) for one year. The litter types differed remarkably in C:N ratio which was 29 for spontaneous litter and 14 for alder litter. The two microcosm types were either accessible or not accessible to soil macrofauna. The effect of macrofauna exclusion on soil mixing was complex and depended on litter quality and the site that determined soil fauna composition. In reclaimed sites where macrofauna was dominated by saprophags, mainly earthworms, the macrofauna access increased soil mixing. In sites where predators dominated, the macrofauna exclusion probably suppressed fragmentation and mixing activity of the mesofauna.  相似文献   

4.
Tropical landscapes are dominated by agroecosystems, but the potential value of agroecosystems for the survival of species is often overlooked. In agroecosystems, species conservation is especially important when functional groups such as predators are affected. In Central Sulawesi, we sampled arthropods on cocoa in a gradient of land-use intensity from extensively used forest gardens to intensively used agroforestry systems. The abundance and diversity of all arthropods did not correlate with land-use intensity, so human impact was not followed by high species losses. However, the number of species and abundance of the phytophagous arthropods increased and that of the entomophagous arthropods decreased with land-use intensity. The reduced predator–prey ratio in intensified systems can be related to their reduced species richness of shade trees and the changed microclimate (increased temperature, decreased humidity and canopy cover). In conclusion, transformation of traditional into intensified agroforestry systems had a great impact on arthropod community structure on cocoa. Since predator–prey ratios decreased with increasing land-use intensity, local farmers should have least pest problems in the traditionally diversified agroforestry systems.  相似文献   

5.
Vegetation surveys were carried out at 24 sampling stations distributed over four land use types, namely near-primary forest, secondary forest, agroforestry systems and annual crop lands in the northeastern part of the Korup region, Cameroon, to assess the impact of forest conversion on trees and understorey plants. Tree species richness decreased significantly with increasing level of habitat modification, being highest and almost equal in secondary and near-primary forests. Understorey plant species richness was significantly higher in annual crop lands than in other land use types. The four land use types differed in tree and understorey plant species composition, the difference being smaller among natural forests. Tree and understorey plant density differed significantly between habitat types. Density was strongly correlated with species richness, both for trees and understorey plants. Five tree and 15 understorey plant species showed significant responses to habitat. A 90% average drop in tree basal area from forest to farmland was registered. Our findings support the view that agroforestry systems with natural shade trees can serve to protect many forest species, but that especially annual crop lands could be redesigned to improve biodiversity conservation in agricultural landscapes of tropical rainforest regions.  相似文献   

6.
It is generally assumed that declining soil fertility during cultivation forces farmers to clear forest. We wanted to test this for a rainforest margin area in Central Sulawesi, Indonesia. We compared soil characteristics in different land-use systems and after different length of cultivation. 66 sites with four major land-use systems (maize, agroforestry, forest fallow and natural forest) were sampled. Soils were generally fertile, with high base cation saturation, high cation exchange capacity, moderate pH-values and moderate to high stocks of total nitrogen. Organic matter stocks were highest in natural forest, intermediate in forest fallow and lowest in maize and agroforestry sites. In maize fields soil organic matter decreased during continuous cultivation, whereas in agroforestry it was stable or had the tendency to increase in time. The effective cation exchange capacity (ECEC) was highest in natural forest and lowest in maize fields. Base cations saturation of ECEC did not change significantly during cultivation both maize and agroforestry, whereas the contribution of K cations decreased in maize and showed no changes in agroforestry sites. Our results indicate that maize cultivation tends to reduce soil fertility but agroforestry systems are able to stop this decline of soil fertility or even improve it. As most areas in this rain forest margin are converted into agroforestry systems it is unlikely that soil degradation causes deforestation in this case. On the contrary, the relatively high soil fertility may actually attract new immigrants who contribute to deforestation and start agriculture as smallholders.  相似文献   

7.
We evaluated the effects of different land-use systems on the ability of dung beetles to control the population of detritus-feeding flies. We tested the hypotheses that intensification of land use will reduce dung beetles richness, abundance and biomass and, consequently, their dung burial ability, affecting the interaction between dung beetles and flies and reducing its effectiveness as a natural biological control. In the Brazilian Amazon we sampled dung beetles, fly larvae and adults; and recorded the rate of dung removal by dung beetles across a gradient of land-use intensity from primary forest, secondary forest, agroforestry, agriculture to pasture. Our results provide evidence that land-use intensification results in a reduction of the richness, abundance and biomass of dung beetles, and this in turn results in lower rates of dung removal in the most simplified systems. We found no significant differences in the abundance of fly larvae between the different systems of land use. However, the number of adult flies differed significantly between land-use systems, presenting higher abundance in those sites with greater intensity of use (pasture and agriculture) and a lower abundance of adult flies in forested systems (primary and secondary forests, and agroforestry). Information-theoretic model selection based on AICc revealed strong support for the influence of land-use systems, dung removal rates and dung beetle abundance, biomass and richness on adult dung-fly abundance. Our results also reveal that dung beetles are not solely responsible for fly control and that other factors linked to land use are influencing the populations of these detritus-feeding insects.  相似文献   

8.
Land-use intensification is a central element in proposed strategies to address global food security. One rationale for accepting the negative consequences of land-use intensification for farmland biodiversity is that it could ‘spare’ further expansion of agriculture into remaining natural habitats. However, in many regions of the world the only natural habitats that can be spared are fragments within landscapes dominated by agriculture. Therefore, land-sparing arguments hinge on land-use intensification having low spillover effects into adjacent protected areas, otherwise net conservation gains will diminish with increasing intensification. We test, for the first time, whether the degree of spillover from farmland into adjacent natural habitats scales in magnitude with increasing land-use intensity. We identified a continuous land-use intensity gradient across pastoral farming systems in New Zealand (based on 13 components of farmer input and soil biogeochemistry variables), and measured cumulative off-site spillover effects of fertilisers and livestock on soil biogeochemistry in 21 adjacent forest remnants. Ten of 11 measured soil properties differed significantly between remnants and intact-forest reference sites, for both fenced and unfenced remnants, at both edge and interior. For seven variables, the magnitude of effects scaled significantly with magnitude of surrounding land-use intensity, through complex interactions with fencing and edge effects. In particular, total C, total N, δ15N, total P and heavy-metal contaminants of phosphate fertilizers (Cd and U) increased significantly within remnants in response to increasing land-use intensity, and these effects were exacerbated in unfenced relative to fenced remnants. This suggests movement of livestock into surrounding natural habitats is a significant component of agricultural spillover, but pervasive changes in soil biogeochemistry still occur through nutrient spillover channels alone, even in fenced remnants set aside for conservation. These results have important implications for the viability of land-sparing as a strategy for balancing landscape-level conservation and production goals in agricultural landscapes.  相似文献   

9.
Human activities often impact the sensory environment of organisms. Wind energy turbines are a fast-growing potential source of anthropogenic vibrational noise that can affect soil animals sensitive to vibrations and thereby alter soil community functioning. Larger soil animals, such as earthworms (macrofauna, > 1 cm in size), are particularly likely to be impacted by the low-frequency turbine waves that can travel through soils over large distances. Here we examine the effect of wind turbine-induced vibrational noise on the abundance of soil animals. We measured vibrational noise generated by seven different turbines located in organically-farmed crop fields in the Netherlands. Vibratory noise levels dropped by an average of 23 ± 7 dB over a distance of 200 m away from the wind turbines. Earthworm abundance showed a strong decrease with increasing vibratory noise. When comparing the nearest sampling points in proximity of the wind energy turbines with the points furthest away, abundance dropped on average by 40% across all seven fields. The abundance of small-sized soil animals (mesofauna, < 10 mm in size) differed between crop fields, but was not related to local noise levels. Our results suggest that anthropogenic vibratory noise levels can impact larger soil fauna, which has important consequences for soil functioning. Earthworms, for instance, are considered to be crucial ecosystem engineers and an impact on their abundance, survival and reproduction may have knock-on effects on important processes such as water filtration, nutrient cycling and carbon sequestration.  相似文献   

10.
Afforestation of open habitats is one of the principal land-use changes underway in Europe and elsewhere in the world at present, and it can have a considerable impact on local biodiversity. The sustainable expansion of global forest plantations requires an understanding of the factors that determine the ecological impacts of afforestation. This study set out to determine the importance of preceding land-use type in determining the outcomes of afforestation for bird communities. Paired comparisons of 5-year-old exotic conifer plantations and matching non-forested sites were studied in areas of low (peatland), intermediate (wet grassland) and high (improved grassland) management intensity. Afforestation resulted in an overall increase in total bird density in all three habitat types. The effects of forest planting on bird conservation were found to be positively related to prior management intensity at the site. The density of bird species of conservation concern increased in response to the planting of intensively managed grassland sites, but decreased in response to afforestation of peatlands and of grasslands under intermediate management intensity. This study shows that plantation forests can, in some contexts, offer opportunities for bird conservation, and the findings highlight the trade-offs that are an integral part of land-use change. Therefore, where afforestation planning includes consideration of its impact on bird communities, planting should take place predominantly on sites of low biodiversity value, such as agriculturally improved grasslands. Furthermore, the preservation of sites of high conservation value within areas of afforestation would confer advantages on bird communities.  相似文献   

11.
Organic carbon and aggregate stability are key features of soil quality and are important to consider when evaluating the potential of agricultural soils as carbon sinks. However, we lack a comprehensive understanding of how soil organic carbon (SOC) and aggregate stability respond to agricultural management across wide environmental gradients. Here, we assessed the impact of climatic factors, soil properties and agricultural management (including land use, crop cover, crop diversity, organic fertilization, and management intensity) on SOC and the mean weight diameter of soil aggregates, commonly used as an indicator for soil aggregate stability, across a 3000 km European gradient. Soil aggregate stability (−56%) and SOC stocks (−35%) in the topsoil (20 cm) were lower in croplands compared with neighboring grassland sites (uncropped sites with perennial vegetation and little or no external inputs). Land use and aridity were strong drivers of soil aggregation explaining 33% and 20% of the variation, respectively. SOC stocks were best explained by calcium content (20% of explained variation) followed by aridity (15%) and mean annual temperature (10%). We also found a threshold-like pattern for SOC stocks and aggregate stability in response to aridity, with lower values at sites with higher aridity. The impact of crop management on aggregate stability and SOC stocks appeared to be regulated by these thresholds, with more pronounced positive effects of crop diversity and more severe negative effects of crop management intensity in nondryland compared with dryland regions. We link the higher sensitivity of SOC stocks and aggregate stability in nondryland regions to a higher climatic potential for aggregate-mediated SOC stabilization. The presented findings are relevant for improving predictions of management effects on soil structure and C storage and highlight the need for site-specific agri-environmental policies to improve soil quality and C sequestration.  相似文献   

12.
Tropical montane cloud forests (TMCF) in the Orinoco River Basin are vulnerable to climate and regional land-use changes. These changes will force TMCF to migrate upwards, affecting biodiversity conservation and water flow regulation. Here, we evaluate how vegetation and soil macrofauna composition vary along the hydrometeorological gradient driven by an increase in fog incidence with elevation. Vegetation data were collected for all individuals with a diameter at breast height (DBH) > 5 cm in four vegetation plots (5 × 50 m; total: 0.1 ha) every 100 m in altitude between 1700 and 2200 m a.s.l. From each plot, we obtained three soil monoliths from the organic layer and three from the mineral horizon, and manually extracted their soil macrofauna. For these groups, we describe: (1) their compositional changes along the hydrometeorological gradient employing ordination analyses techniques and (2) the relation of the composition changes between vegetation and soil macrofauna communities using a symmetrical co-correspondence analysis. Our results show that the vegetation morphospecies composition and soil macrofauna-order composition vary significantly with the hydrometeorological gradient along elevation. The co-correspondence between vegetation and soil macrofauna reveals a shared breakpoint above the 2000 m a.s.l., where fog is more persistent. Furthermore, we identified eight indicator vegetation species and two soil macrofauna orders associated with specific elevations. These results suggest that under a climate-change-driven fog lift, the TMCF of the Orinoco River Basin will be displaced. Moreover, this study provides a baseline to monitor such displacement.  相似文献   

13.
Worldwide, tropical landscapes are increasingly dominated by human land use systems and natural forest cover is decreasing rapidly. We studied frugivorous butterflies and several vegetation parameters in 24 sampling stations distributed over near-primary forest (NF), secondary forest (SF), agroforestry and annual culture sites in the Northeastern part of the Korup region, SW Cameroon. As in other studies, both butterfly species richness and abundance were significantly affected by habitat modification. Butterfly richness and abundance were highest in SF and agroforestry sites and significantly lower in NF and annual crop sites. Butterfly species richness increased significantly with increasing tree density, but seemed to decrease with increasing herb diversity and density in annual crop farms. A significant negative correlation was found between butterfly geographic range and their preference for NF sites. Our results also showed that agroforestry systems, containing remnants of natural forest, can help to sustain high site richness, but appear to have low complementarity through loss of endemic species confined to more undisturbed habitats. Our study also indicated that the abundance of selected restricted-range butterflies, particularly in the family Nymphalidae, appears to be a good indicator to assess and monitor forest disturbance.  相似文献   

14.
The earth is facing a worldwide decline in biodiversity, with land-use change identified as one of the most important drivers. There is evidence that the loss of diversity has a significant impact on ecosystem functioning. Earlier research focused on species richness, but more recent, functional and phylogenetic diversity came into the picture as the stronger determinants of ecosystem processes. The effects of increasing land-use intensity on functional (FD) and phylogenetic diversity (PD), however, are still poorly understood. We studied how FD and PD are affected by land-use intensity in temperate plant communities. Our results show that land-use intensity has a clear impact on species richness, but also affects functional and phylogenetic diversity. Intensive agricultural areas fail to support high and sustainable levels of functional and phylogenetic diversity. These results highlight the need for the protection of biodiversity in nature reserves and the conservation of areas with extensive agricultural practices. Because species richness may influence the measures of functional and phylogenetic diversity, we compared the observed FD and PD values with random values generated with a matrix-swap null model. The observed discrepancy between species loss and the loss of FD and PD calls for an integrated approach to biodiversity conservation, in which the different components of biodiversity are considered together.  相似文献   

15.
Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of bird populations.  相似文献   

16.
Jones  M.  Sinclair  F.L.  Grime  V.L. 《Plant and Soil》1998,201(2):197-207
Soil cores were taken to estimate root length prior to transplanting and after 60 days growth of a dry season sorghum crop in an agroforestry experiment in a semi-arid region of north-east Nigeria. The experiment compared sorghum grown alone and with two tree species (Acacia nilotica subsp adstringens and Prosopis juliflora) and one management treatment (pruning of tree crowns). Data on soil water content were collected from 6 days before and 20, 60 and 110 days after sorghum transplanting. The main findings were: (i) Per unit root length, A. nilotica had a more negative effect on sorghum above and below ground than P. juliflora. This appeared to be correlated with greater rates of water extraction from layers of soil shared with crop roots; (ii) Crown pruning substantially reduced the competitive effect of P. juliflora on crop yield but did not affect the impact of A. nilotica on intercropped sorghum. Since the impact of pruning on tree-crop competition varies with species, tree species selection and management will be a key factor in determining the feasibility of dryland agroforestry systems.  相似文献   

17.
Rong Mao  De-Hui Zeng  Lu-Jun Li 《Plant and Soil》2011,347(1-2):115-123
Fresh tree root decomposition induced by tillage is an important source of soil nutrients in agroforestry systems. Here we examined the effects of tree species, root size and soil N enrichment on fresh root decomposition under laboratory conditions. Fresh roots with two diameters (<2 and 2?C5 mm) of Populus euramericana cv. ??N3016?? (poplar) and Pinus tabulaeformis (pine) collected from agroforestry systems in Northeast China were used in the experiment. For each root treatment, four N levels (0, 50, 100 and 150 ??g N g?1 soil) were added. We recognized N concentration and C/N ratio as the root quality variables, and determined decomposition rates as cumulative CO2 production and mass loss. Poplar roots had higher N concentration and lower C/N ratio and decomposed faster than pine roots, and smaller roots decomposed faster than the corresponding larger roots. The effect of N addition on root decomposition varied from positive to negligible to negative, and depended on root quality and N addition rates. Increased N availability did not accelerate and even suppressed poplar root decomposition, whereas generally stimulated pine root decomposition. Our results suggest that root quality should be incorporated into the design of agroforestry systems. Moreover, the differential responses of N addition on decomposition of fresh roots with different quality provide insights into soil nutrient management in agroforestry practices.  相似文献   

18.
Wild animals substantially support crop production by providing ecosystem services, such as pollination and natural pest control. However, the strengths of synergies between ecosystem services and their dependencies on land-use management are largely unknown. Here, we took an experimental approach to test the impact of land-use intensification on both individual and combined pollination and pest control services in coffee production systems at Mount Kilimanjaro. We established a full-factorial pollinator and vertebrate exclosure experiment along a land-use gradient from traditional homegardens (agroforestry systems), shaded coffee plantations to sun coffee plantations (total sample size = 180 coffee bushes). The exclusion of vertebrates led to a reduction in fruit set of ca 9%. Pollinators did not affect fruit set, but significantly increased fruit weight of coffee by an average of 7.4%. We found no significant decline of these ecosystem services along the land-use gradient. Pest control and pollination service were thus complementary, contributing to coffee production by affecting the quantity and quality of a major tropical cash crop across different coffee production systems at Mount Kilimanjaro.  相似文献   

19.
The agricultural activity in the Argentine Pampas, characterized by an important trend towards no-till soybean monocropping, has completely transformed the original Pampas landscape into a monotonous scenario with a continuous succession of farms of very low crop diversity. This process has led to soil physical, chemical and biological degradation in those systems. The increase of crop rotation rates in no-till and reduced tillage systems has been proposed as an alternative with reduced negative impact on soils in the context of conventional agriculture. On the other hand, extensive organic farming is also suggested as an alternative to high-input agriculture systems. In this article, we aim to explore how different variations of farming practices and systems impact soil macrofauna, along an edaphoclimatic gradient in the Pampas region. We studied the following systems: natural grassland (Gr) as indicator of the original community, extensive organic farming (Org), conventional agriculture with no-tillage and three crop rotation levels (Nt-R1, Nt-R2 and Nt-R3), and reduced tillage with two levels of crop rotation (Til and Til-R). We assessed soil macrofauna, with emphasis on earthworm, beetle and ant communities; and soil physical and chemical properties. Macrofaunal taxa composition was significantly affected by both management systems and edaphoclimatic conditions. The Gr community had pronounced differences from all the agricultural systems. The earthworm community from Gr had distinctive features from those of most agricultural systems, with Org and Nt-R3 being the most similar to Gr in native and exotic earthworm species, respectively. The beetle community in Org was the most different one, and the communities from the other systems did not show a pattern related to management. Ant community composition was not determined by management systems, but it was affected by edaphoclimatic conditions. All the studied macrofauna groups had a significant co-variation with soil physical and chemical properties, showing that both the characteristics of each soil relative to the geographic location and the effect of management on abiotic soil attributes have an important effect on soil macrofauna. This study confirms that biodiversity is being lost in Pampas soils, which implies a possible threat to the soil capacity to perform the processes that sustain soil functioning and hence plant productivity. Further considerations about the sustainability of the current agricultural model applied in the Argentine Pampas are needed.  相似文献   

20.
The New Forest National Park is a hotspot for biodiversity in the UK. A long history of grazing by ponies in the New Forest landscape has created a diverse mosaic of habitats that are of international significance. We investigated patterns of species diversity and composition across the New Forest landscape by sampling soil, leaf litter and ground macrofauna from woodland, grassland and heathland plots across the entire landscape. We used a spatially replicated design of hand sorted soil pits, Winkler extraction of leaf litter, and pitfall traps. We concentrated on diversity patterns of the following target groups: Coleoptera, Formicidae, Isopoda, Chilopoda, Diplopoda, Opiliones and Lumbricidae. The most striking difference in species assemblages is between wooded and open areas. Woodlands are the most diverse habitats and have a distinct assemblage, largely due to those leaf litter invertebrate species which are only present under a closed canopy. Open areas are less diverse, with diversity particularly low in the wet grasslands. However, the open areas do have a distinct fauna, especially in the wet and dry heaths which are home to a number of rare species, particularly of Formicidae. We discuss the potential conservation problems facing the New Forest and how these might affect soil macrofauna biodiversity in the future and conclude that climate change; over-grazing; and land use changes represent the largest threats. Although a relatively stable landscape which benefits from protection under UK law, changes in grazing intensity or management practices in the New Forest, particularly for some of the habitats of European importance (e.g. wet heathlands), could negatively affect soil macrofauna biodiversity. Climate change may also exacerbate biodiversity decline as a result of increased grazing intensity or changes in management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号