首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these N-rich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p < 0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p < 0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.  相似文献   

3.
 细根在发挥植物功能以及生态系统碳和养分循环过程中起着重要作用。为了解我国不同森林生态系统细根直径变化规律, 提供建立根系模型的基础, 该文研究了我国温带、亚热带和热带45个常见树种1~5级根直径的变异以及直径与根序的关系。结果表明: 1)在所有树种中, 1级根直径最细, 5级根直径最粗, 直径随根序的增加而增加。此外, 同一根序的直径在不同树种间变异较大, 在不同生态系统中, 各树种1级根的总体平均直径呈现温带<亚热带<热带的格局。2)不同生态系统树种同一根序平均直径变异程度不同, 各个根序都是温带最小, 亚热带次之, 热带最大。3)细根内部各个根序的平均直径变异的52%由根序解释, 33%由树种解释, 生态系统类型和生活型分别解释7%和2%。不同系统不同树种直径的变异说明无法用统一的直径级来研究根的功能, 也无法用统一的根序和直径间的关系来建立根系形态模型。今后的研究需要进一步认识根序和直径在不同树种中如何与根的功能相联系。  相似文献   

4.
细根在森林生态系统C分配和养分循环过程中发挥着重要作用, 但对地下细根与植物多样性之间关系的研究相对较少。该研究选择中亚热带从单一树种的杉木(Cunninghamia lanceolata)人工林到多树种的常绿阔叶林(青冈(Cyclobalanopsis glauca)-石栎(Lithocarpus glaber)林)的不同植物多样性梯度, 用根钻法采集细根并测定其生物量, 用Win-RHIZO 2005C根系分析系统测定细根形态参数, 以验证以下3个假设: 1)植物种类丰富度高的林分其细根生产存在“地下超产”现象; 2)根系空间生态位的分离水平是否随着植物多样性增多而增大? 3)细根是否通过形态可塑性对林木竞争做出响应?结果显示: 从单一树种的杉木人工林到植物种类较复杂的青冈-石栎常绿阔叶林, 0-30 cm土层的林分细根总生物量和活细根生物量均呈增加的趋势, 即细根总生物量为杉木林(305.20 g·m-2) <马尾松(Pinus massoniana)林(374.25 g·m-2) <南酸枣(Choerospondias axillaris)林(537.42 g·m-2) <青冈林(579.33 g·m-2), 活细根生物量为杉木林(268.74 g·m-2) <马尾松林(299.15 g·m-2) <南酸枣林(457.32 g·m-2) <青冈林(508.47 g·m-2), 各森林类型之间的细根总生物量差异显著(p < 0.05), 但活细根生物量差异不显著。土壤垂直剖面上, 除杉木林细根生物量随土层变化不显著外, 其他森林类型的活细根生物量和总细根生物量均随土层变化显著, 表层细根生物量随树种多样性的升高呈减小趋势, 据此推测树种间的生态位分离水平逐渐增大。植物多样性的不同对林分的细根形态及空间分布格局影响不显著, 细根形态可塑性对生物量变化响应不明显。  相似文献   

5.
Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times <40 yrs had significantly lower maintenance respiration for both wood and fine roots than forests with residence times >40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long‐term mean annual temperatures do not impact CUE.  相似文献   

6.
Summary Belowground processes in light gap openings are poorly understood, particularly in tropical forests. Fine roots in three zones of light gap openings and adjacent intact forest were regularly measured in buried bags and surface litter envelopes for 2 years. Fine root biomass does not vary significantly within gaps for either buried bags or for surface litter envelopes. When entire gaps are compared without regard for within gap zones, root growth into both surface litter and buried bags is significantly different between gaps, with highest rates of fine root biomass accumulation in the smallest gap. These results suggest that the aboveground within-gap zones do not result in a congruent pattern of below-ground zonation. Gap size, decomposition of the fallen tree, and pre-gap fine root growth rates should be considered to determine fine root growth patterns following the formation of light gap openings.  相似文献   

7.
以川西亚高山50年生粗枝云杉(Picea asperata)人工林为研究对象, 探讨了间伐对粗枝云杉人工林1-5级细根生物量及碳储量的影响。结果表明: 粗枝云杉人工林细根生物量和碳储量随根序等级的增加而显著增加(p < 0.05), 5级根序中1级根生物量及碳储量最小, 5级根生物量及碳储量最大。与对照(间伐0%)相比, 间伐对粗枝云杉人工林林分细根生物量及碳储量有显著影响(p < 0.05); 而对单株细根生物量影响不一, 间伐10%和20%与对照没有显著性差异(p > 0.05)。间伐显著影响生物量在各根序中的分配, 随着间伐强度的增加, 1、2级细根中生物量分配比例增加, 1级细根的生物量增加幅度最大; 3-5级细根的生物量分配比例减小, 5级细根减少幅度最大。其中, 间伐50%显著减少了细根在下层(20-40 cm)土壤中的生物量比例(p < 0.05), 但与间伐20%和30%无显著差异(p > 0.05)。  相似文献   

8.
Abstract

Globally, forests cover 4 billion ha or 30% of the Earth's land surface and account for more that 75% of carbon stored in terrestrial ecosystem. However, 20 – 40% of the forest biomass is roots. Roots play a key role in acquisition of water and nutrients from the soil, the transfer of carbon to soil, as well as providing physical stabilisation. In temperate forests of Europe, average biomass of trees is estimated to be ca. 220 t ha?1, of which 52 t ha?1 are coarse roots and 2.4 t ha?1 are fine roots. Thus, forests and their soils belong to the planets largest reservoirs of carbon. As an outcome of a recently established European platform for scientists working on woody roots, COST action E38, a series of papers has been initiated in order to review the current knowledge on processes in and of roots of woody plants and to identify possible knowledge gaps. These reviews concentrate on aspects of roots as indicators of environmental change, biomass of fine roots, and modelling of course root systems. The reviews of roots as indicators of environmental change cover a number of aspects including, specific root length, the calcium to aluminium ratio, root electrolyte leakage, and ectomycorrhiza community composition.  相似文献   

9.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

10.

Background and aims

The influences of succession and species diversity on fine root production are not well known in forests. This study aimed to investigate: (i) whether fine root biomass and production increased with successional stage and increasing tree species diversity; (ii) how forest type affected seasonal variation and regrowth of fine roots.

Methods

Sequential coring and ingrowth core methods were used to measure fine root production in four Chinese subtropical forests differing in successional stages and species diversity.

Results

Fine root biomass increased from 262 g·m?2 to 626 g·m?2 with increasing successional stage and species diversity. A similar trend was also found for fine root production, which increased from 86 to 114 g·m?2 yr ?1 for Cunninghamia lanceolata plantation to 211–240 g·m?2 yr ?1 for Choerospondias axillaries forest when estimated with sequential coring data. Fine root production calculated using the ingrowth core data ranged from 186 g·m?2 yr ?1 for C. lanceolata plantation to 513 g·m?2 yr ?1 for Lithocarpus glaber – Cyclobalanopsis glauca forest.

Conclusions

Fine root biomass and production increased along a successional gradient and increasing tree species diversity in subtropical forests. Fine roots in forests with higher species diversity exhibited higher seasonal variation and regrowth rate.  相似文献   

11.

Background and aims

Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors.

Results

Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24?±?6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12?±?4 %; p?Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.  相似文献   

12.
The distribution of root biomass and physical and chemical properties of the soils were studied in a semideciduous and in a lower montane rain forest in Panama. Roots and soil samples were taken by means of soil cores (25 cm deep) and divided into five, 5-cm deep sections. Soils were wet-sieved to retrieve the roots that were classified in four diameter classes: very fine roots (<1 mm), fine roots (1–2 mm), medium roots (2–5 mm) and coarse roots (5–50 mm). Soil samples were analyzed for organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, pH, aluminium and exchangeable acidity. Total root biomass measured with the soil corer (roots <50 mm in diameter) was not different between the forests (9.45 t ha-1), while biomass of very fine roots was larger in the mountains (2.00 t ha-1) than in the lowlands (1.44 t ha-1). The soils in the semideciduous forest were low in available phosphorus, while in the mountains, soils had low pH, high exchangeable aluminium and exchangeable acidity, and low concentration of exchangeable bases. Phosphorus was in high concentration only in the first 5 cm of the soil. In both forests, there was an exponential reduction of root biomass with increasing depth, and most of the variation in the vertical distribution of roots less than 2 mm in diameter was explained by the concentration of nitrogen in the soils. The results of this study support the hypothesis that a large root biomass in montane forests is related to nutrients in low concentration and diluted in organic soils with high CEC and low bulk density, and that fine root biomass in tropical forests in inversely related to calcium availability but not a phosphorus as has been suggested for other forests.  相似文献   

13.
植物根系是全球陆地生态系统碳储量的重要组成部分,在全球生态系统碳循环中起着重要作用,日益加剧的氮沉降会影响根系生物量在空间和不同径级的分配,进而影响森林生态系统的生产力和土壤养分循环。以杉木幼树为研究对象,通过野外氮沉降模拟实验,研究氮沉降四年后对不同土层、不同径级根系生物量的影响。结果发现:(1)低氮和高氮处理总细根生物量较对照均无显著差异(P > 0.05),高氮处理粗根生物量及总根系生物量较对照分别增加45%和40%(P < 0.05);(2)与对照相比,施氮处理显著增加20-40 cm与40-60 cm土层细根和粗根生物量,且在低氮处理下,20-40 cm土层细根、粗根在总土层细根与粗根生物量的占比显著提高。(3)与对照相比,高氮处理显著增加了2-5 mm、5-10 mm及10-20 mm径级的根系生物量,低氮处理显著增加2-5 mm、5-10 mm径级根系生物量,且显著降低20-50 mm径级根系生物量。综上所述表明:氮沉降后杉木幼树通过增加较粗径级根系来增加对养分及水分的输送,同时通过增加深层根系生物量及其比例的策略来维持杉木幼树的快速生长;而根系生物量的增加,在一定程度上会增加根系碳源的输入,影响土壤碳循环过程。  相似文献   

14.
15.
Allometry, biomass, and productivity of mangrove forests: A review   总被引:15,自引:8,他引:7  
We review 72 published articles to elucidate characteristics of biomass allocation and productivity of mangrove forests and also introduce recent progress on the study of mangrove allometry to solve the site- and species-specific problems. This includes the testing of a common allometric equation, which may be applicable to mangroves worldwide. The biomass of mangrove forests varies with age, dominant species, and locality. In primary mangrove forests, the above-ground biomass tends to be relatively low near the sea and increases inland. On a global scale, mangrove forests in the tropics have much higher above-ground biomass than those in temperate areas. Mangroves often accumulate large amounts of biomass in their roots, and the above-ground biomass to below-ground biomass ratio of mangrove forests is significantly low compared to that of upland forests (ANCOVA, P < 0.01). Several studies have reported on the growth increment of biomass and litter production in mangrove forests. We introduce some recent studies using the so-called “summation method” and investigate the trends in net primary production (NPP). For crown heights below 10 m, the above-ground NPP of mangrove forests is significantly higher (ANOVA, P < 0.01) than in those of tropical upland forests. The above-ground litter production is generally high in mangrove forests. Moreover, in many mangrove forests, the rate of soil respiration is low, possibly because of anaerobic soil conditions. These trends in biomass allocation, NPP, and soil respiration will result in high net ecosystem production, making mangrove forests highly efficient carbon sinks in the tropics.  相似文献   

16.
Fine roots <2 mm in diameter play a key role in regulating the biogeochemical cycles of ecosystems and are important to our understanding of ecosystem responses to global climate changes. Given the sensitivity of fine roots, especially in boreal region, to climate changes, it is important to assess whether and to what extent fine roots in this region change with climates. Here, in this synthesis, a data set of 218 root studies were complied to examine fine root patterns in the boreal forest in relation to site and climatic factors. The mean fine root biomass in the boreal forest was 5.28 Mg ha?1, and the production of fine roots was 2.82 Mg ha?1 yr?1, accounting for 32% of annual net primary production of the boreal forest. Fine roots in the boreal forest on average turned over 1.07 times per year. Fine roots contained 50.9 kg ha?1 of nitrogen (N) and 3.63 kg ha?1 of phosphorous (P). In total, fine roots in the boreal forest ecosystems contain 6.1 × 107 Mg N and 4.4×106Mg P pools, respectively, about 10% of the global nutrients of fine roots. Fine root biomass, production, and turnover rate generally increased with increasing mean annual temperature and precipitation. Fine root biomass in the boreal forest decreased significantly with soil N and P availability. With increasing stand age, fine root biomass increased until about 100 years old for forest stands and then leveled off or decreased thereafter. These results of meta analysis suggest that environmental factors strongly influence fine root biomass, production, and turnover in boreal forest, and future studies should place a particular emphasis on the root-environment relationships.  相似文献   

17.
2010年11月-2011年12月, 研究了华西雨屏区31年生香樟人工林土壤表层(0~30 cm)细根生物量及碳储量.结果表明: 香樟人工林土壤0~30 cm层细根总生物量(活根+死根)和碳储量的平均值分别为1592.29 kg·hm-2和660.68 kg C·hm-2,其中活细根贡献率分别为91.1%和91.8%.随着土壤深度的增加,香樟1~5级活细根和死细根的生物量及碳储量均显著减少;随着根序等级的升高,香樟活细根生物量及碳储量显著增加.香樟细根总生物量及碳储量均在秋季最高、冬季最低,死细根生物量及碳储量为冬季最高、夏季最低;1级根和2级根生物量及碳储量均在夏季最高、冬季最低,而3~5级根则为秋季最高、冬季最低.土壤养分和水分的空间异质性是导致细根生物量和碳储量变化的主要原因.  相似文献   

18.
Sharp‐shinned Hawks (Accipiter striatus) are forest raptors that are widely distributed in the Americas. A subspecies endemic to Puerto Rico (A. s. venator) is listed as endangered and restricted to mature and old secondary montane forests and shade coffee plantations. However, recent information about the population status and distribution of Puerto Rican Sharp‐shinned Hawks is lacking. We developed a spatial geographic distribution model for Sharp‐shinned Hawks in Puerto Rico from 33 locations collected during four breeding seasons (2013–2016) using biologically relevant landscape variables (aspect, canopy closure, elevation, rainfall, slope, and terrain roughness). Elevation accounted for 89.8% of the model fit and predicted that the greatest probability of occurrence of Sharp‐shinned Hawks in Puerto Rico (> 60%) was at elevations above 900 m. Based on our model, an estimated 56.1 km2 of habitat exists in Puerto Rico with a high probability of occurrence. This total represents ~0.6% of the island's area. Public lands included 43.8% of habitat with high probability of occurrence (24.6 km2), 96% of which was located within four protected areas. Our results suggest that Sharp‐shinned Hawks are rare in Puerto Rico and restricted to the higher elevations of the Cordillera Central. Additional research is needed to identify and address ecological limiting factors, and recovery actions are needed to avoid the extinction of this endemic island raptor.  相似文献   

19.
Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) ‘below-ground overyielding’ of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m−2 in the species-poor to species-rich stands, with 63–77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that ‘below-ground overyielding’ in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species.  相似文献   

20.
The question of how tropical trees cope with infertile soils has been challenging to address, in part, because fine root dynamics must be studied in situ. We used annual fertilization with nitrogen (N as urea, 12.5 g N m?2 year?1), phosphorus (P as superphosphate, 5 g P m?2 year?1) and potassium (K as KCl, 5 g K m?2 year?1) within 38 ha of old‐growth lowland tropical moist forest in Panama and examined fine root dynamics with minirhizotron images. We expected that added P, above all, would (i) decrease fine root biomass but, (ii) have no impact on fine root turnover. Soil in the study area was moderately acidic (pH = 5.28), had moderate concentrations of exchangeable base cations (13.4 cmol kg?1), low concentrations of Bray‐extractable phosphate (PO4 = 2.2 mg kg?1), and modest concentrations of KCl‐extractable nitrate (NO3 = 5.0 mg kg?1) and KCl‐extractable ammonium (NH4 = 15.5 mg kg?1). Added N increased concentrations of KCl‐extractable NO3 and acidified the soil by one pH unit. Added P increased concentrations of Bray‐extractable PO4 and P in the labile fraction. Concentrations of exchangeable K were elevated in K addition plots but reduced by N additions. Fine root dynamics responded to added K rather than added P. After 2 years, added K decreased fine root biomass from 330 to 275 g m?2. The turnover coefficient of fine roots <1 mm diameter ranged from 2.6 to 4.4 per year, and the largest values occurred in plots with added K. This study supported the view that biomass and dynamics of fine roots respond to soil nutrient availability in species‐rich, lowland tropical moist forest. However, K rather than P elicited root responses. Fine roots smaller than 1 mm have a short lifetime (<140 days), and control of fine root production by nutrient availability in tropical forests deserves more study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号