首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology of lingual papillae of the ten male mature Saanen goats (11 months old, approximately 42 kg in weight and of a known pedigree) was examined by scanning electron microscopy. Tissues were taken from the dorsal and ventral surfaces of the apex, body and root of the tongue, and were prepared accordingly and observed under the scanning electron microscope. On the dorsal and ventro-lateral surfaces of the lingual mucosa, three types of mechanical papillae (filiform, lenticular, and conical) and two types of gustatory papillae (vallate and fungiform) were observed. The structure and density of the filiform papillae differentiated on the anterior, posterior and ventro-lateral aspects of the tongue. Two types of lenticular papillae, both possessing a prominent surrounding papillary groove, were determined. The pyramidal-shaped type I lenticular papilla had a pointed apex while the round-shaped type II lenticular papilla possessed a blunt apex. Certain number of the type I lenticular papillae had double apices. The larger conical papillae were hollow structures, differing structurally from the filiform papillae with their larger size, a tip without projections and lack of the secondary papillae. The vallate papillae were present on both rims of the torus linguae, were encircled by a prominent gustatory furrow which was also surrounded by a thick annular fold. The fungiform papillae were scattered among the filiform papillae in the anterior two-thirds of the dorsal and lateral surfaces, and each of them was highly protected by surrounding filiform papillae, yet encircled by a papillary groove. Our findings indicate that Saanen goat have profuse distribution of papillae on the tongue displaying morphological features characteristic of mechanical function.  相似文献   

2.
3.
The structure of the lingual papillae and the ultrastructure of the surface of the lingual dorsal epithelial cells of squirrel monkeys were observed by scanning electron microscopy. Filiform papillae were distributed over the entire dorsal surface of the tongue, except for the radix zone. Fungiform papillae were scattered among these filiform papillae. In the middle of the posterior end of the lingual body, a single vallate papilla was located. Higher magnification of the lingual dorsal epithelium revealed that prominent microridges and elevated intercellular borders occurred widely in the basofrontal area of the filiform papillae, interpapillar area and lingual radix zone. On the surface of the upper part of the filiform papillae, fine pits and hollows were observed. Indistinct microridges were distributed over the surface of the fungiform papillae.  相似文献   

4.
Subepithelial blood vessels of the rat lingual papillae and their spatial relations to the connective tissue papillae and surface structures were demonstrated by light and scanning electron microscopy. In the rat, four types of papillae were distinguished on the dorsal surface of the tongue, i.e. the filiform, fungiform, foliate and circumvallate papillae. Vascular beds of various appearance were found in all four types of lingual papillae: a simple or twisted capillary loop in the filiform papilla; a basket- or petal-like network in the fungiform papilla; a ring-like network in the foliate papilla, and a conglomerated network surrounded by double heart-shaped capillary networks in the circumvallate papilla. These characteristic vascular beds corresponded to the shape of the connective tissue papillae and surface structures. The vascular bed beneath the gustatory epithelium in the fungiform, foliate and circumvallate papilla consisted of fine capillary networks next to the taste buds.  相似文献   

5.
6.
Three-dimensional characteristics of the epithelial cell layer and connective tissue interface of the tongue were studied using scanning electron microscopy. In this study, the fragments of tongue were fixed in modified Karnovsky's fixative solution. Subsequently, the specimens were treated with 10% NaOH solution for 4-7 days at room temperature and postfixed in 1% OsO4 in 0.1 M phosphate buffer (pH 7.4) for 2 hours at 4 degrees C. They were dehydrated through a graded ethanol series, and critical-point dried with CO2. The specimens were coated with gold and observed in a scanning electron microscope, JEOL JSM-6100. The results showed numerous papillae on the dorsal surface of the tongue divided into four groups (filiform, fungiform, foliate and vallate papillae). Filiform papillae are conically shaped; fungiform papillae have an irregular round surface; foliate papillae are oval in shape and have some parallel projections; and vallate papillae are located in the posterior part of the tongue and have a depression around the center. After the treatment with 10% NaOH solution, the original arrangements of connective papillae could be seen. This characteristic three-dimensional distribution of the collagen fiber bundles is typical for each superficial papillae depending on whether it is filiform, fungiform, foliate or vallate.  相似文献   

7.
8.
The function of mouth organs in ruminants is connected with the process of rumination. To study morphofunctional relations, microstructures in tongues of 4- to 5-year old adult fallow deer were examined using scanning electron microscopy.When analyzing the tongue of the fallow deer, i.e. a ruminant classified as an intermediate mixed feeder between grass and roughage eaters, two processes were taken into account: (i) foraging and forage selecting, and (ii) chewing the cud during rumination to reduce particle size and improve digestibility.Microstructural results show that the above mentioned processes in fallow deer are important selection factors, which in the anterior part of tongue led to the development of clusters of fungiform papillae connected with preselection of food as well as a specific pattern of filiform papillae promoting increased adhesion of transported food. Massive and flattened conical papillae on the torus are arranged according to sideways jaw movements and are co-localized with flattened fungiform papillae and two rows of vallate papillae. Such an arrangement of papillae on the lingual torus presumably facilities distribution of ruminated food, with simultaneous transferring of taste signals about masticated food particles.  相似文献   

9.
Comparative features of the dorsal tongue epithelia in musk shrews, mongooses and rats were described. The shapes of the filiform papillae were different in each of the species. The distribution pattern of filiform papillae was similar both in the musk shrews and mongoose, in that the form of filiform papillae changed gradually from the lingual apex to the posterior part of the lingual body. By contrast, the different types of filiform papillae were distributed on definite areas of the dorsal lingual surface in the rat. Microridges on the interpapillar surface in the musk shrew and mongoose presented a clear outline, but those of the rat were not so distinct. In all species, the upper surface of filiform papillae did not show any distinct microridges.  相似文献   

10.
The morphological characteristics of bovine and equine gustatory lingual papillae are compared by scanning electron microscopy. The fungiform papillae in the cow have a shape that corresponds to their name, while in the horse, they almost do not emerge from the surface of the tongue. These papillae show taste pores in both species. The vallate papillae, four times larger in the horse than in the cow, show a complex organization of papillae and secondary grooves in the horse. In the cow, they occur single and are surrounded by a thick annular pad of lingual mucosa. Taste pores have been observed in the vallate papillae of both species, whereas in the foliate papillae, they are present only in the horse. A characteristic distribution of stratified scales and channeled tracts is observed on the surface of all gustatory papillae in both species. The possible functional importance of each type of gustatory papilla is discussed on the basis of their morphostructural features.  相似文献   

11.
Sections of tissues containing lingual and extra-lingual taste buds were evaluated with monoclonal antibodies against cytokeratins. In the caudal third of the rat's tongue, keratin 20 immunoreactivity was restricted to taste buds, whereas keratins 7, 8, 18, and 19 were expressed in vallate and foliate taste buds and in cells of salivary ducts that merge with these taste epithelia. Hence, antibodies against keratin 20 most clearly distinguished differentiated taste cells from all other cells. In rat epiglottis, taste buds and isolated bipolar cells were keratin-20-positive. In rat nasopalatine papilla and palate, antibodies against keratin 20 identified Merkel cells, none of which was near to the keratin-20-negative taste buds. Nor were Merkel cells present at epiglottal taste buds or the keratin-20-negative fungiform taste buds or elsewhere in rat tongue. Hence, Merkel cells make no contribution to rat fungiform, epiglottal, nasopalatine, or palatal taste buds. Human and rat keratin-20-positive tissues are reported to be endodermal derivatives with the exception of Merkel cells and luminal urothelial cells. In rats the distribution of keratin-20-positive taste buds was in full agreement with the classical view that the posterior third of the tongue is derived from endoderm (keratin-20-positive taste buds), whereas the anterior two-thirds of the tongue is derived from stomadeal ectoderm (keratin-20-negative taste buds). The equally intense keratin 20 immunoreactivity of human fungiform and vallate taste buds violates this traditional rostro-caudal segregation and suggests that endodermally derived tissues may be present in the tip of the human tongue.  相似文献   

12.
El‐Bakry, A.M. 2010. Study by transmission and scanning electron microscopy of the morphogenesis of three types of lingual papillae in the albino rat (Rattus rattus).—Acta Zoologica (Stockholm) 91 : 267–278 Tongues were removed from albino rat foetus on days 12 (E12) and 16 (E16) of gestation and from newborns (P0) and from juvenile rats on days 7 (P7), 14 (P14) and 21 (P21) postnatally for investigation by light, scanning, and transmission electron microscopy. Significant changes appeared during the morphogenesis of the papillae. At E12, two rows of rudiments of fungiform papillae were extended bilaterally on the anterior half of the tongue. At E16, the rudiments of fungiform papillae were regularly arranged in a lattice‐like pattern. A rudiment of circumvallate papillae could be recognized. No rudiment of filiform papillae was visible. No evidence of keratinization was recognizable. At P0, rudiments of filiform papillae were visible but had a more rounded appearance, with keratinization. The fungiform and circumvallate papillae were large and their outlines were somewhat irregular as that found in the adult rat. At P7, the filiform papillae were large and slender. The fungiform papillae became large and the shape of circumvallate papillae was almost similar to that observed in the adult. At P14 and P21, the shape and structure of the three types of papillae were irregular as those found in the adult. In conclusion, the rudiments of the fungiform and circumvallate papillae were visible earlier than those of the filiform papillae. The morphogenesis of filiform papillae advanced in a parallel manner with the keratinization of the lingual epithelium, in the period from just before birth to a few weeks after birth.  相似文献   

13.
The structure of precursors to fungiform papillae without taste buds, prior to the arrival of sensory nerve fibers at the papillae, was examined in the fetal rat on embryonic day 13 (E13) and 16 (E16) by light and transmission electron microscopy in an attempt to clarify the mechanism of morphogenesis of these papillae. At E13, a row of rudiments of fungiform papillae was arranged along both sides of the median sulcus of the lingual dorsal surface, and each row consisted of about 10 rudiments. There was no apparent direct contact between papillae rudiments and sensory nerves at this time. Bilaterally towards the lateral side of the tongue, adjacent to these first rudiments of fungiform papillae, a series of cord-like invaginations of the dorsal epithelium of the tongue into the underlying connective tissue, representing additional papillary primordia parallel to the first row, was observed. The basal end of each invagination was enlarged as a round bulge, indented at its tip by a mound of fibroblasts protruding into the bulge. At E16 there was still no apparent direct contact between rudiments of fungiform papillae and sensory nerves. Each rudiment apically contained a spherical core of aggregating cells, which consisted of a dense assembly of large, oval cells unlike those in other areas of the lingual dorsal epithelium. The differentiation of these aggregated cells was unclear. The basal lamina was clearly recognizable between the epithelium of the rudiment of fungiform papillae and the underlying connective tissue. Spherical structures, which appeared to be sections of the cord-like invaginations of the lingual epithelium that appeared on E13, were observed within the connective tissue separated from the dorsal lingual epithelium. Transverse sections of such structures revealed four concentric layers of cells: a central core, an inner shell, an outer shell, and a layer of large cells. Bundles of fibers were arranged in the central core, and the diameters of bundles varied somewhat depending on the depth of the primordia within the connective tissue and their distance from the median sulcus. Ultrastructural features of cells in the outer shell differed significantly in rudiments close to the lingual epithelium as compared to those in deeper areas of connective tissue. Around the outer shell there was a large-cell layer consisting of one to three layers of radially elongated, oval cells that contained many variously sized, electron-dense, round granules. Large numbers of fibroblasts formed dense aggregates around each spherical rudiment, and were separated by the basal lamina from the large-cell epithelial layer. Progressing from deep-lying levels of the rudiments of the papillae to levels close to the lingual surface epithelium, the central core, inner shell, and outer shell gradually disappeared from the invaginated papillary cords.  相似文献   

14.
The dorsal surface of the mammalian tongue is covered with four kinds of papillae, fungiform, circumvallate, foliate and filiform papillae. With the exception of the filiform papillae, these types of papillae contain taste buds and are known as the gustatory papillae. The gustatory papillae are distributed over the tongue surface in a distinct spatial pattern. The circumvallate and foliate papillae are positioned in the central and lateral regions respectively and the fungiform papillae are distributed on the anterior part of the tongue in a stereotyped array. The patterned distribution and developmental processes of the fungiform papillae indicate some similarity between the fungiform papillae and the other epithelial appendages, including the teeth, feathers and hair. This is because 1) prior to the morphological changes, the signaling molecules are expressed in the fungiform papillae forming area with a stereotyped pattern; 2) the morphogenesis of the fungiform papillae showed specific structures in early development, such as epithelial thickening and mesenchymal condensation and 3) the fungiform papillae develop through reciprocal interactions between the epithelium and mesenchymal tissue. These results led us to examine whether or not the early organogenesis of the fungiform papillae is a good model system for understanding both the spacing pattern and the epithelial-mesenchymal interaction during embryogenesis.  相似文献   

15.
Development and morphological changes of human gustatory papillaeduring postovulatory weeks 6–15 have been studied usingscanning and transmission electron microscopy. The first papillaof the tongue appears around postovulatory week 6 in its caudalmidline near the foramen caecum. In contrast, the dorsal epitheliumof the anterior part of the tongue shows only small hillock-or papilla-like elevations from week 6 on, which comprise anaggregation of 5–20 epithelial cells. From week 7 on,most prominent fungiform papillae develop near the median sulcusand at the margins of the anterior part of the tongue. At theirtops, the first primitive taste pores are found around week10; these are often covered with processes of adjacent epithelialcells. Most pores, however, develop around weeks 14–15.The maturation of taste buds does not coincide with the appearanceof taste pores, since taste bud cells are not fully differentiatedin the observed period of time. Fungiform papillae are developedbefore filiform papillae, which do not occur within the first15 weeks of gestation. Fungiform papillae tend to grow betweenweeks 8 and 15 of gestation, whereas the size of vallate papillaeseems to be constant during this period. Chem. Senses 22: 601–612,1997.  相似文献   

16.
Unlike frogs and European tree frogs, the common toad Bufo bufo possesses a tongue lacking filiform papillae on its dorsal surface. Instead, the mucosal epithelium forms irregular, high folds, dividing the surface of the tongue into numerous separate compartments. At the bottom of those compartments occur openings of tubular glands and singular ciliated cells. In a strongly distended tongue the folds of mucosa disappear, and the regions of glandular orifices assume a shape of pocket-like recesses. The taste discs with an average diameter of 120 micrograms are localized on the top of markedly shortened fungiform papillae. The superficial layer of taste discs contains a single type of glandular supporting cells, which in part of discs show features suggesting their gradual dezintegration, probably related to the process of cellular turnover in gustatory organs.  相似文献   

17.
M A Qayyum  M A Beg 《Acta anatomica》1975,93(4):554-567
The anatomy and neurohistology of the tongue of the Indian goat, Capra aegagrus, have been described. The apex linguae is notched in the centre. The foramen caecum is found to be absent. The sublingua could not be traced. The filiform papillae are the most common and divided into three types: the simple, giant, and true filiform papillae. The true filiform papillae are the most developed of the three types. The foliate papillae are absent. There are 13--14 circumvallate papillae arranged in two rows in a V-shaped pattern. The fungiform papillae are large and could easily be seen with the naked eye. They are scattered over the entire dorsum, being in abundance at the tip. The tongue of the goat is richly innervated. On the dorsum, the lamina propria is innervated by thick nerve fibres. In the fungiform papillae quite a large number of nerve fibres could be seen. The circumvallate papillae are also abundantly provided with nerves. A few ganglion cells are found below the circumvallate papillae. Thick nerve fibres are seen across the numerous glands and their ducts. Muscle fibres and connective tissue are also richly innervated.  相似文献   

18.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) are essential for the survival of geniculate ganglion neurons, which provide the sensory afferents for taste buds of the anterior tongue and palate. To determine how these target-derived growth factors regulate gustatory development, the taste system was examined in transgenic mice that overexpress BDNF (BDNF-OE) or NT4 (NT4-OE) in basal epithelial cells of the tongue. Overexpression of BDNF or NT4 caused a 93 and 140% increase, respectively, in the number of geniculate ganglion neurons. Surprisingly, both transgenic lines had severe reduction in fungiform papillae and taste bud number, primarily in the dorsal midregion and ventral tip of the tongue. No alterations were observed in taste buds of circumvallate or incisal papillae. Fungiform papillae were initially present on tongues of newborn BDNF-OE animals, but many were small, poorly innervated, and lost postnatally. To explain the loss of nerve innervation to fungiform papillae, the facial nerve of developing animals was labeled with the lipophilic tracer DiI. In contrast to control mice, in which taste neurons innervated only fungiform papillae, taste neurons in BDNF-OE and NT4-OE mice innervated few fungiform papillae. Instead, some fibers approached but did not penetrate the epithelium and aberrant innervation to filiform papillae was observed. In addition, some papillae that formed in transgenic mice had two taste buds (instead of one) and were frequently arranged in clusters of two or three papillae. These results indicate that target-derived BDNF and NT4 are not only survival factors for geniculate ganglion neurons, but also have important roles in regulating the development and spatial patterning of fungiform papilla and targeting of taste neurons to these sensory structures.  相似文献   

19.
From time of embryonic emergence, the gustatory papilla types on the mammalian tongue have stereotypic anterior and posterior tongue locations. Furthermore, on anterior tongue, the fungiform papillae are patterned in rows. Among the many molecules that have potential roles in regulating papilla location and pattern, Sonic hedgehog (Shh) has been localized within early tongue and developing papillae. We used an embryonic, tongue organ culture system that retains temporal, spatial, and molecular characteristics of in vivo taste papilla morphogenesis and patterning to study the role of Shh in taste papilla development. Tongues from gestational day 14 rat embryos, when papillae are just beginning to emerge on dorsal tongue, were maintained in organ culture for 2 days. The steroidal alkaloids, cyclopamine and jervine, that specifically disrupt the Shh signaling pathway, or a Shh-blocking antibody were added to the standard culture medium. Controls included tongues cultured in the standard medium alone, and with addition of solanidine, an alkaloid that resembles cyclopamine structurally but that does not disrupt Shh signaling. In cultures with cyclopamine, jervine, or blocking antibody, fungiform papilla numbers doubled on the dorsal tongue with a distribution that essentially eliminated inter-papilla regions, compared with tongues in standard medium or solanidine. In addition, fungiform papillae developed on posterior oral tongue, just in front of and beside the single circumvallate papilla, regions where fungiform papillae do not typically develop. The Shh protein was in all fungiform papillae in embryonic tongues, and tongue cultures with standard medium or cyclopamine, and was conspicuously localized in the basement membrane region of the papillae. Ptc protein had a similar distribution to Shh, although the immunoproduct was more diffuse. Fungiform papillae did not develop on pharyngeal or ventral tongue in cyclopamine and jervine cultures, or in the tongue midline furrow, nor was development of the single circumvallate papilla altered. The results demonstrate a prominent role for Shh in fungiform papilla induction and patterning and indicate differences in morphogenetic control of fungiform and circumvallate papilla development and numbers. Furthermore, a previously unknown, broad competence of dorsal lingual epithelium to form fungiform papillae on both anterior and posterior oral tongue is revealed.  相似文献   

20.
When the glossopharyngeal nerve (GP) in the frog was strongly stimulated electrically, slow potentials were elicited from the tongue surface and taste cells in the fungiform papillae. Injection of atropine completely blocked these slow potentials. The present and previous data indicate that the slow potentials induced in the tongue surface and taste cells are due to a liquid junction potential between saliva secreted from the lingual glands due to parasympathetic fiber activity and an adapting solution on the tongue surface. Intracellularly recorded depolarizing receptor potentials in taste cells induced by 0.5 M NaCl and 3 mM acetic acid were enhanced by depolarizing slow potentials induced by GP nerve stimulation, but were depressed by the hyperpolarizing slow potentials. On average, the receptor potential of taste cells for 0.5 M NaCl was increased by 25% by the GP nerve-induced slow potential, but the receptor potential of taste cells for 3 mM acetic acid was decreased by 1% by the slow potential. These transformations of receptor potentials in frog taste cells were not due to a synaptic event initiated between taste cells and the efferent nerve fiber, but due to a non-synaptic event, a lingual junction potential generated in the dorsal lingual epithelium by GP nerve stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号