首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xinyang Huang  Jin Xu 《Biometrics》2020,76(4):1310-1318
Individualized treatment rules (ITRs) recommend treatments based on patient-specific characteristics in order to maximize the expected clinical outcome. At the same time, the risks caused by various adverse events cannot be ignored. In this paper, we propose a method to estimate an optimal ITR that maximizes clinical benefit while having the overall risk controlled at a desired level. Our method works for a general setting of multi-category treatment. The proposed procedure employs two shifted ramp losses to approximate the 0-1 loss in the objective function and constraint, respectively, and transforms the estimation problem into a difference of convex functions (DC) programming problem. A relaxed DC algorithm is used to solve the nonconvex constrained optimization problem. Simulations and a real data example are used to demonstrate the finite sample performance of the proposed method.  相似文献   

3.
The field of precision medicine aims to tailor treatment based on patient-specific factors in a reproducible way. To this end, estimating an optimal individualized treatment regime (ITR) that recommends treatment decisions based on patient characteristics to maximize the mean of a prespecified outcome is of particular interest. Several methods have been proposed for estimating an optimal ITR from clinical trial data in the parallel group setting where each subject is randomized to a single intervention. However, little work has been done in the area of estimating the optimal ITR from crossover study designs. Such designs naturally lend themselves to precision medicine since they allow for observing the response to multiple treatments for each patient. In this paper, we introduce a method for estimating the optimal ITR using data from a 2 × 2 crossover study with or without carryover effects. The proposed method is similar to policy search methods such as outcome weighted learning; however, we take advantage of the crossover design by using the difference in responses under each treatment as the observed reward. We establish Fisher and global consistency, present numerical experiments, and analyze data from a feeding trial to demonstrate the improved performance of the proposed method compared to standard methods for a parallel study design.  相似文献   

4.
5.
In many settings, including oncology, increasing the dose of treatment results in both increased efficacy and toxicity. With the increasing availability of validated biomarkers and prediction models, there is the potential for individualized dosing based on patient specific factors. We consider the setting where there is an existing dataset of patients treated with heterogenous doses and including binary efficacy and toxicity outcomes and patient factors such as clinical features and biomarkers. The goal is to analyze the data to estimate an optimal dose for each (future) patient based on their clinical features and biomarkers. We propose an optimal individualized dose finding rule by maximizing utility functions for individual patients while limiting the rate of toxicity. The utility is defined as a weighted combination of efficacy and toxicity probabilities. This approach maximizes overall efficacy at a prespecified constraint on overall toxicity. We model the binary efficacy and toxicity outcomes using logistic regression with dose, biomarkers and dose–biomarker interactions. To incorporate the large number of potential parameters, we use the LASSO method. We additionally constrain the dose effect to be non-negative for both efficacy and toxicity for all patients. Simulation studies show that the utility approach combined with any of the modeling methods can improve efficacy without increasing toxicity relative to fixed dosing. The proposed methods are illustrated using a dataset of patients with lung cancer treated with radiation therapy.  相似文献   

6.
Individualized treatment regimes (ITRs) aim to recommend treatments based on patient‐specific characteristics in order to maximize the expected clinical outcome. Outcome weighted learning approaches have been proposed for this optimization problem with primary focus on the binary treatment case. Many require assumptions of the outcome value or the randomization mechanism. In this paper, we propose a general framework for multicategory ITRs using generic surrogate risk. The proposed method accommodates the situations when the outcome takes negative value and/or when the propensity score is unknown. Theoretical results about Fisher consistency, excess risk, and risk consistency are established. In practice, we recommend using differentiable convex loss for computational optimization. We demonstrate the superiority of the proposed method under multinomial deviance risk to some existing methods by simulation and application on data from a clinical trial.  相似文献   

7.
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large‐scale prediction of drug indications (PREDICT) that can handle both approved drugs and novel molecules. Our method is based on the observation that similar drugs are indicated for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures for the prediction task. On cross‐validation, it obtains high specificity and sensitivity (AUC=0.9) in predicting drug indications, surpassing existing methods. We validate our predictions by their overlap with drug indications that are currently under clinical trials, and by their agreement with tissue‐specific expression information on the drug targets. We further show that disease‐specific genetic signatures can be used to accurately predict drug indications for new diseases (AUC=0.92). This lays the computational foundation for future personalized drug treatments, where gene expression signatures from individual patients would replace the disease‐specific signatures.  相似文献   

8.
Effectiveness studies and analyses of naturalistic cohorts demonstrate that many patients with major depressive disorder do not experience symptomatic remission with antidepressant treatments. In an effort to better match patients with effective treatments, numerous investigations of predictors or moderators of treatment response have been reported over the past five decades, including clinical features as well as biological measures. However, none of these have entered routine clinical practice; instead, clinicians typically personalize treatment on the basis of patient preferences as well as their own. Here, we review the reasons why it has been challenging to identify and deploy treatment‐specific predictors of response, and suggest strategies that may be required to achieve true precision in the pharmacotherapy of depression. We emphasize the need for changes in how depression care is delivered, measured, and used to inform future practice.  相似文献   

9.

Background

Adverse drug events (ADEs) detection and assessment is at the center of pharmacovigilance. Data mining of systems, such as FDA’s Adverse Event Reporting System (AERS) and more recently, Electronic Health Records (EHRs), can aid in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be valuable, it is still crucial to improve the quality of the generated signals.

Objective

To leverage structural similarity by developing molecular fingerprint-based models (MFBMs) to strengthen ADE signals generated from EHR data.

Methods

A reference standard of drugs known to be causally associated with the adverse event pancreatitis was used to create a MFBM. Electronic Health Records (EHRs) from the New York Presbyterian Hospital were mined to generate structured data. Disproportionality Analysis (DPA) was applied to the data, and 278 possible signals related to the ADE pancreatitis were detected. Candidate drugs associated with these signals were then assessed using the MFBM to find the most promising candidates based on structural similarity.

Results

The use of MFBM as a means to strengthen or prioritize signals generated from the EHR significantly improved the detection accuracy of ADEs related to pancreatitis. MFBM also highlights the etiology of the ADE by identifying structurally similar drugs, which could follow a similar mechanism of action.

Conclusion

The method proposed in this paper provides evidence of being a promising adjunct to existing automated ADE detection and analysis approaches.  相似文献   

10.
11.
12.
Oncoproteomics is an important innovation in the early diagnosis, management and development of personalized treatment of acute lymphoblastic leukaemia (ALL). As inherent factors are not completely known – e.g. age or family history, radiation exposure, benzene chemical exposure, certain viral exposures such as infection with the human T‐cell lymphoma/leukaemia virus‐1, as well as some inherited syndromes may raise the risk of ALL – each ALL patient may modify the susceptibility of therapy. Indeed, we consider these unknown inherent factors could be explained via coupling cytogenetics plus proteomics, especially when proteins are the ones which play function within cells. Innovative proteomics to ALL therapy may help to understand the mechanism of drug resistance and toxicities, which in turn will provide some leads to improve ALL management. Most important of these are shotgun proteomic strategies to unravel ALL aberrant signalling networks. Some shotgun proteomic innovations and bioinformatic tools for ALL therapies will be discussed. As network proteins are distinctive characteristics for ALL patients, unrevealed by cytogenetics, those network proteins are currently an important source of novel therapeutic targets that emerge from shotgun proteomics. Indeed, ALL evolution can be studied for each individual patient via oncoproteomics.  相似文献   

13.
14.
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.  相似文献   

15.
In recent years, developing the idea of “cancer big data” has emerged as a result of the significant expansion of various fields such as clinical research, genomics, proteomics and public health records. Advances in omics technologies are making a significant contribution to cancer big data in biomedicine and disease diagnosis. The increasingly availability of extensive cancer big data has set the stage for the development of multimodal artificial intelligence (AI) frameworks. These frameworks aim to analyze high-dimensional multi-omics data, extracting meaningful information that is challenging to obtain manually. Although interpretability and data quality remain critical challenges, these methods hold great promise for advancing our understanding of cancer biology and improving patient care and clinical outcomes. Here, we provide an overview of cancer big data and explore the applications of both traditional machine learning and deep learning approaches in cancer genomic and proteomic studies. We briefly discuss the challenges and potential of AI techniques in the integrated analysis of omics data, as well as the future direction of personalized treatment options in cancer.  相似文献   

16.
Papermaking wastewater accounts for a large proportion of industrial wastewater, and it is essential to obtain accurate and reliable effluent indices in real-time. Considering the complexity, nonlinearity, and time variability of wastewater treatment processes, a dynamic kernel extreme learning machine (DKELM) method is proposed to predict the key quality indices of effluent chemical oxygen demand (COD). A time lag coefficient is introduced and a kernel function is embedded into the extreme learning machine (ELM) to extract dynamic information and obtain better prediction accuracy. A case study for modeling a wastewater treatment process is demonstrated to evaluate the performance of the proposed DKELM. The results illustrate that both training and prediction accuracy of the DKELM model is superior to other models. For the prediction of the quality indices of effluent COD, the determinate coefficient of the DKELM model is increased by 27.52 %, 21.36 %, 10.42 %, and 10.81 %, compared with partial least squares, ELM, dynamic ELM, and kernel ELM, respectively.  相似文献   

17.
Personalized medicine implies that distinct treatment methods are prescribed to individual patients according several features that may be obtained from, e.g., gene expression profile. The majority of machine learning methods suffer from the deficiency of preceding cases, i.e. the gene expression data on patients combined with the confirmed outcome of known treatment methods. At the same time, there exist thousands of various cell lines that were treated with hundreds of anti-cancer drugs in order to check the ability of these drugs to stop the cell proliferation, and all these cell line cultures were profiled in terms of their gene expression.

Here we present a new approach in machine learning, which can predict clinical efficiency of anti-cancer drugs for individual patients by transferring features obtained from the expression-based data from cell lines. The method was validated on three datasets for cancer-like diseases (chronic myeloid leukemia, as well as lung adenocarcinoma and renal carcinoma) treated with targeted drugs – kinase inhibitors, such as imatinib or sorafenib.  相似文献   


18.

Aim

Globally distributed plant trait data are increasingly used to understand relationships between biodiversity and ecosystem processes. However, global trait databases are sparse because they are compiled from many, mostly small databases. This sparsity in both trait space completeness and geographical distribution limits the potential for both multivariate and global analyses. Thus, ‘gap-filling’ approaches are often used to impute missing trait data. Recent methods, like Bayesian hierarchical probabilistic matrix factorization (BHPMF), can impute large and sparse data sets using side information. We investigate whether BHPMF imputation leads to biases in trait space and identify aspects influencing bias to provide guidance for its usage.

Innovation

We use a fully observed trait data set from which entries are randomly removed, along with extensive but sparse additional data. We use BHPMF for imputation and evaluate bias by: (1) accuracy (residuals, RMSE, trait means), (2) correlations (bi- and multivariate) and (3) taxonomic and functional clustering (valuewise, uni- and multivariate). BHPMF preserves general patterns of trait distributions but induces taxonomic clustering. Data set–external trait data had little effect on induced taxonomic clustering and stabilized trait–trait correlations.

Main Conclusions

Our study extends the criteria for the evaluation of gap-filling beyond RMSE, providing insight into statistical data structure and allowing better informed use of imputed trait data, with improved practice for imputation. We expect our findings to be valuable beyond applications in plant ecology, for any study using hierarchical side information for imputation.  相似文献   

19.
Little RJ  Long Q  Lin X 《Biometrics》2009,65(2):640-649
Summary .  We consider the analysis of clinical trials that involve randomization to an active treatment ( T  = 1) or a control treatment ( T  = 0), when the active treatment is subject to all-or-nothing compliance. We compare three approaches to estimating treatment efficacy in this situation: as-treated analysis, per-protocol analysis, and instrumental variable (IV) estimation, where the treatment effect is estimated using the randomization indicator as an IV. Both model- and method-of-moment based IV estimators are considered. The assumptions underlying these estimators are assessed, standard errors and mean squared errors of the estimates are compared, and design implications of the three methods are examined. Extensions of the methods to include observed covariates are then discussed, emphasizing the role of compliance propensity methods and the contrasting role of covariates in these extensions. Methods are illustrated on data from the Women Take Pride study, an assessment of behavioral treatments for women with heart disease.  相似文献   

20.
We summarized and compared meta‐analyses of pharmacological and non‐pharmacological interventions targeting physical health outcomes among people with schizophrenia spectrum disorders. Major databases were searched until June 1, 2018. Of 3,709 search engine hits, 27 meta‐analyses were included, representing 128 meta‐analyzed trials and 47,231 study participants. While meta‐analyses were generally of adequate or high quality, meta‐analyzed studies were less so. The most effective weight reduction interventions were individual lifestyle counseling (standardized mean difference, SMD=–0.98) and exercise interventions (SMD=–0.96), followed by psychoeducation (SMD=–0.77), aripiprazole augmentation (SMD=–0.73), topiramate (SMD=–0.72), d‐fenfluramine (SMD=–0.54) and metformin (SMD=–0.53). Regarding waist circumference reduction, aripiprazole augmentation (SMD=–1.10) and topiramate (SMD=–0.69) demonstrated the best evidence, followed by dietary interventions (SMD=–0.39). Dietary interventions were the only to significantly improve (diastolic) blood pressure (SMD=–0.39). Switching from olanzapine to quetiapine or aripiprazole (SMD=–0.71) and metformin (SMD=–0.65) demonstrated best efficacy for reducing glucose levels, followed by glucagon‐like peptide‐1 receptor agonists (SMD=–0.39), dietary interventions (SMD=–0.37) and aripiprazole augmentation (SMD=–0.34), whereas insulin resistance improved the most with metformin (SMD=–0.75) and rosiglitazone (SMD=–0.44). Topiramate had the greatest efficacy for triglycerides (SMD=–0.68) and low‐density lipoprotein (LDL)‐cholesterol (SMD=–0.80), whereas metformin had the greatest beneficial effects on total cholesterol (SMD=–0.51) and high‐density lipoprotein (HDL)‐cholesterol (SMD=0.45). Lifestyle interventions yielded small effects for triglycerides, total cholesterol and LDL‐cholesterol (SMD=–0.35 to –0.37). Only exercise interventions increased exercise capacity (SMD=1.81). Despite frequent physical comorbidities and premature mortality mainly due to these increased physical health risks, the current evidence for pharmacological and non‐pharmacological interventions in people with schizophrenia to prevent and treat these conditions is still limited and more larger trials are urgently needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号