首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uridine diphosphoglucose dehydrogenase of pea seedlings   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

2.
3.
4.
5.
6.
Alcohol dehydrogenase [EC 1.1.1.1] was purified to homogeneity from rabbit liver by water extraction, DEAE-cellulose treatment, affinity chromatography on 5'-AMP-Sepharose and gel filtration on Sephadex G-150 using dithiothreitol as a stabilizer. The purified enzyme has an estimated molecular weight of 72,000 and consists of two subunits with a molecular weight of about 36,000 each. The enzyme contains 4 g-atoms of zinc and 18 sulfhydryl groups per mol of protein and exhibits maximal activity at pH 10.8, with a second maximum at pH 7.5. The apparent Km values for ethanol and NAD+ are 0.45 mM and 53.19 microM, respectively, at pH 10.8 and 3.33 mM and 6.94 microM, respectively, at pH 7.5. The enzyme oxidizes ethanol most readily among the aliphatic alcohols studied and has very low substrate specificity for methanol. Among steroid alcohols, 5 beta-androstan-3 beta-ol-17-one serves as a substrate for the enzyme. Pyrazole and 4-methylpyrazole (which are well known alcohol dehydrogenase inhibitors), sulfhydryl reagents, heavy metal ions and metal-chelating agents inactivate the enzyme.  相似文献   

7.
8.
9.
10.
Uridine phosphorylase was purified 1,370-fold from sonicated extracts of Acholeplasma laidlawii by ammonium sulfate precipitation, DEAE-Sephadex column chromatography, hydroxylapatite chromatography, and Sephadex G-200 fractionation. The molecular weight of the enzyme as determined by gel filtration was approximately 65,000. [U-14C]ribose-1-phosphate (Rib-1-P), prepared enzymatically from [U-14C]inosine, was utilized in initial velocity studies of uridine synthesis, which indicated a sequential reaction with a KmUra of 110 microM and a KmRib-1-P of 17 microM. The kinetics of uridine cleavage were assessed at a saturating cosubstrate concentration, resulting in a KmUrd of 170 microM and a KmPi of 120 microM. These results indicate that an intracellular flux from uracil to uridine is kinetically feasible. However, such flux would be metabolically unproductive, since the low affinity of uridine kinase (KmUrd = 3.2 mM) precludes the operation of uridine phosphorylase and uridine kinase in tandem to convert uracil to UMP. We conclude that uridine phosphorylase performs only a catabolic function in A. laidlawii.  相似文献   

11.
Dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) are flavoproteins which catalyze the oxidative demethylation of dimethylglycine to sarcosine and sarcosine to glycine, respectively. During these reactions tightly bound tetrahydropteroylpentaglutamate (H4PteGlu5) is converted to 5,10-methylene tetrahydropteroylpentaglutamate (5,10-CH2-H4PteGlu5), although in the absence of H4PteGlu5, formaldehyde is produced. Single turnover studies using substrate levels of the enzyme (2.3 microM) showed pseudo-first-order kinetics, with apparent first-order rate constants of 0.084 and 0.14 s-1 at 23 and 48.3 microM dimethylglycine, respectively, for dimethylglycine dehydrogenase and 0.065 s-1 at 47.3 microM sarcosine for sarcosine dehydrogenase. The rates were identical in the absence or presence of bound tetrahydropteroylglutamate (H4PteGlu). Titration of the enzymes with substrate under anaerobic conditions did not disclose the presence of an intermediate semiquinone. The effect of dimethylglycine concentration upon the rate of the dimethylglycine dehydrogenase reaction under aerobic conditions showed nonsaturable kinetics suggesting a second low-affinity site for the substrate which increases the enzymatic rate. The Km for the high-affinity active site was 0.05 mM while direct binding for the low-affinity site could not be measured. Sarcosine and dimethylthetin are poor substrates for dimethylglycine dehydrogenase and methoxyacetic acid is a competitive inhibitor at low substrate concentrations. At high dimethylglycine concentrations, increasing the concentration of methoxyacetic acid produces an initial activation and then inhibition of dimethylglycine dehydrogenase activity. When these compounds were added in varying concentrations to the enzyme in the presence of dimethylglycine, their effects upon the rate of the reaction were consistent with the presence of a second low-affinity binding site on the enzyme which enhances the reaction rate. When sarcosine is used as the substrate for sarcosine dehydrogenase the kinetics are Michaelis-Menten with a Km of 0.5 mM for sarcosine. Also, methoxyacetic acid is a competitive inhibitor of sarcosine dehydrogenase with a Ki of 0.26 mM. In the absence of folate, substrate and product determinations indicated that 1 mol of formaldehyde and of sarcosine or glycine were produced for each mole of dimethylglycine or sarcosine consumed with the concomitant reduction of 1 mol of bound FAD.  相似文献   

12.
13.
14.
15.
16.
An NADPH-dependent 7 alpha-hydroxysteroid dehydrogenase acting on 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was partially purified 160-fold with a yield of 13% from rat liver microsomes using DEAE-cellulose, hydroxyapatite and Affi-Gel Blue column chromatography. The specific activity of the purified enzyme was 91.3 nmol chenodeoxycholic acid formed/min per mg of protein. The reaction was reversible, and the optimum pH of the enzyme for the oxidation was about 8.5, whereas that for the reduction was about 5.0 A molecular weight of the enzyme was estimated to be about 130,000 by Superose 6TM gel filtration chromatography. The apparent Km value for 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was 35.7 microM and that for NADPH was 90.9 microM. The preferred substrate for the enzyme was 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid rather than 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, a 7-keto-bile acid analogue. The enzyme also preferred the unconjugated form to the conjugated forms. The enzyme activity was inhibited by p-chloromercuribenzoate; however, the inhibition was prevented by addition of reduced form of glutathione to the reaction mixture, indicating that the enzyme requires a sulfhydryl group for activity.  相似文献   

17.
18.
19.
20.
Partial purification and properties of acid sphingomyelinase from rat liver   总被引:2,自引:0,他引:2  
Acid sphingomyelinase was purified approximately 5,200-fold from the mitochondria-lysosome-enriched particles of rat liver by sequential chromatography on DEAE-cellulose, octyl-Sepharose, Sephacryl S-300, Concanavalin A-Sepharose, and CM-cellulose. The specific activity of this highly purified enzyme was 3.2 mmol per hr per mg protein. The enzyme was active against 2-hexadecanoylamino-4-nitrophenylphosphorylcholine, but bis-4-methylumbelliferyl-phosphate and bis-p-nitrophenyl-phosphate were poor substrates. The preparation was free of Mg2+-dependent neutral sphingomyelinase and eight lysosomal enzymes except for the trace amount of acid phosphatase and beta-galactosidase. Apparent molecular weight of the enzyme was 200,000, estimated by Sephadex G-200 filtration in 0.1% Triton X-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed three major bands corresponding to molecular weights of 45,600, 44,500, and 40,000 with several minor bands. Characterization of the enzyme revealed almost the same properties as those of human tissues reported by other investigators, including pH optimum, requirement of Triton X-100, effects of metal divalent cations, phosphate ion, EDTA, some thiol blocking reagents, and amphophilic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号