首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
China is one of the countries with the richest snake biodiversity in the world. However, about one‐third of all 236 species are now considered threatened, partially due to the intense human overexploitation. Despite that, to date, no study has explicitly investigated the patterns and processes of extinction and threats of Chinese snakes, or between human exploited and unexploited snake subgroups. We addressed the following three questions: 1) which snake families proportionally include more human exploited species than expected by chance? 2) Which species traits and extrinsic factors are correlated with their extinction risk? 3) Are there differences between human exploited and unexploited species in terms of patterns and processes of extinction? We found that the family Elapidae contained a significantly higher number of exploited species. Considering eight species traits and four extrinsic factors, we performed phylogenetic correlation tests, finding that small geographic range size, large body length, oviparous reproduction, diurnal activity and high human exploitation were important in determining the extinction risk of all Chinese snakes. Moreover, human exploited snakes had a higher percentage of threatened species and large‐bodied species than unexploited snakes. Extinction risk of human exploited species was related to body length, reproduction mode and activity period, whereas that of human unexploited species were associated with geographic range size, microhabitat and annual temperature. Overall, we highlight the phylogenetic non‐random exploitation of snakes, and different factors underlying species response to human overexploitation. We suggest that conservation priority should be given to exploitation‐prone families and species with extinction‐prone traits, as identified in this study. Moreover, human exploited and unexploited species should be managed considering different strategies since their extinction risk was associated with different ecological traits. Conservation actions should also focus on preventing human threats, such as human overexploitation and habitat loss, for the effective preservation of Chinese snakes.  相似文献   

2.
The role of infectious diseases in biological conservation   总被引:1,自引:0,他引:1  
Recent increases in the magnitude and rate of environmental change, including habitat loss, climate change and overexploitation, have been directly linked to the global loss of biodiversity. Wildlife extinction rates are estimated to be 100–1000 times greater than the historical norm, and up to 50% of higher taxonomic groups are critically endangered. While many types of environmental changes threaten the survival of species all over the planet, infectious disease has rarely been cited as the primary cause of global species extinctions. There is substantial evidence, however, that diseases can greatly impact local species populations by causing temporary or permanent declines in abundance. More importantly, pathogens can interact with other driving factors, such as habitat loss, climate change, overexploitation, invasive species and environmental pollution to contribute to local and global extinctions. Regrettably, our current lack of knowledge about the diversity and abundance of pathogens in natural systems has made it difficult to establish the relative importance of disease as a significant driver of species extinction, and the context when this is most likely to occur. Here, we review the role of infectious diseases in biological conservation. We summarize existing knowledge of disease-induced extinction at global and local scales and review the ecological and evolutionary forces that may facilitate disease-mediated extinction risk. We suggest that while disease alone may currently threaten few species, pathogens may be a significant threat to already-endangered species, especially when disease interacts with other drivers. We identify control strategies that may help reduce the negative effects of disease on wildlife and discuss the most critical challenges and future directions for the study of infectious diseases in the conservation sciences.  相似文献   

3.
Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.  相似文献   

4.
Anthropogenic factors constitute the primary deterministic causes of species declines, endangerment and extinction: land development, overexploitation, species translocations and introductions, and pollution. The primary anthropogenic factors produce ecological and genetic effects contributing to extinction risk. Ecological factors include environmental stochasticity, random catastrophes, and metapopulation dynamics (local extinction and colonization) that are intensified by habitat destruction and fragmentation. Genetic factors include hybridization with nonadapted gene pools, and selective breeding and harvesting. In small populations stochastic factors are especially important, including the ecological factors of Allee effect, edge effects, and demographic stochasticity, and the genetic factors of inbreeding depression, loss of genetic variability, and fixation of new deleterious mutations. All factors affecting extinction risk are expressed, and can be evaluated, through their operation on population dynamics.  相似文献   

5.
This paper focuses on how food web structure and interactions among species affects the vulnerability, due to environmental variability, to extinction of species at different positions in model food webs. Vulnerability is here not measured by a traditional extinction threshold but is instead inspired by the IUCN criteria for endangered species: an observed rapid decline in population abundance. Using model webs influenced by stochasticity with zero autocorrelation, we investigate the ecological determinants of species vulnerability, i.e. the trophic interactions between species and food web structure and how these interact with the risk of sudden drops in abundance of species. We find that (i) producers fulfil the criterion of vulnerable species more frequently than other species, (ii) food web structure is related to vulnerability, and (iii) the vulnerability of species is greater when involved in a strong trophic interaction than when not. We note that our result on the relationship between extinction risk and trophic position of species contradict previous suggestions and argue that the main reason for the discrepancy probably is due to the fact that we study the vulnerability to environmental stochasticity and not extinction risk due to overexploitation, habitat destruction or interactions with introduced species. Thus, we suggest that the vulnerability of species to environmental stochasticity may be differently related to trophic position than the vulnerability of species to other factors. Earlier research on species extinctions has looked for intrinsic traits of species that correlate with increased vulnerability to extinction. However, to fully understand the extinction process we must also consider that species interactions may affect vulnerability and that not all extinctions are the result of long, gradual reductions in species abundances. Under environmental stochasticity (which importance frequently is assumed to increase as a result of climate change) and direct and indirect interactions with other species some extinctions may occur rapidly and apparently unexpectedly. To identify the first declines of population abundances that may escalate and lead to extinctions as early as possible, we need to recognize which species are at greatest risk of entering such dangerous routes and under what circumstances. This new perspective may contribute to our understanding of the processes leading to extinction of populations and eventually species. This is especially urgent in the light of the current biodiversity crisis where a large fraction of the world's biodiversity is threatened.  相似文献   

6.
Hot spots of endemism are regarded as important global sites for conservation as they are rich in threatened endemic species and currently experiencing extensive habitat loss. Targeting pre-emptive conservation action to sites that are currently relatively intact but which would be vulnerable to particular human activities if they occurred in the future is, however, also valuable but has received less attention. Here, we address this issue by using data on Endemic Bird Areas (EBAs). First, we identify the ecological factors that affect extinction risk in the face of particular human activities, and then use these insights to identify EBAs that should be priorities for pre-emptive conservation action. Threatened endemic species in EBAs are significantly more likely to be habitat specialists or relatively large-bodied than non-threatened species, when compared across avian families. Increasing habitat loss causes a significant increase in extinction risk among habitat specialists, but we found no evidence to suggest that the presence of alien species/human exploitation causes a significant increase in extinction risk among large-bodied species. This suggests that these particular human activities are contributing to high extinction risk among habitat specialists, but not among large-bodied species. Based on these analyses, we identify 39 EBAs containing 570 species (24% of the total in EBAs) that are not currently threatened with severe habitat loss, but would be ecologically vulnerable to future habitat loss should it occur. We show that these sites tend to be poorly represented in existing priority setting exercises involving hot spots, suggesting that vulnerability must be explicitly included within these exercises if such sites are to be adequately protected.  相似文献   

7.
Climate change is already affecting species worldwide, yet existing methods of risk assessment have not considered interactions between demography and climate and their simultaneous effect on habitat distribution and population viability. To address this issue, an international workshop was held at the University of Adelaide in Australia, 25–29 May 2009, bringing leading species distribution and population modellers together with plant ecologists. Building on two previous workshops in the UK and Spain, the participants aimed to develop methodological standards and case studies for integrating bioclimatic and metapopulation models, to provide more realistic forecasts of population change, habitat fragmentation and extinction risk under climate change. The discussions and case studies focused on several challenges, including spatial and temporal scale contingencies, choice of predictive climate, land use, soil type and topographic variables, procedures for ensemble forecasting of both global climate and bioclimate models and developing demographic structures that are realistic and species-specific and yet allow generalizations of traits that make species vulnerable to climate change. The goal is to provide general guidelines for assessing the Red-List status of large numbers of species potentially at risk, owing to the interactions of climate change with other threats such as habitat destruction, overexploitation and invasive species.  相似文献   

8.
As a result of processes such as habitat loss and overharvest, many species persist in small, isolated populations that experience reduced fitness, decreased evolutionary potential, and increased extinction risk. The goal of species conservation is to restore genetic diversity and adaptive potential caused by isolation and small population size. For populations trapped in an extinction vortex, habitat protection may be inadequate for successful conservation. Alternative actions such as deliberate admixture by introducing individuals from related subspecies may be necessary to recover population fitness. While there is precedent for such actions, admixture temporarily disrupts the taxonomic integrity of a species. Concerns for the taxonomic integrity or “naturalness” of a species may prevent the use of active interventions that involve admixture and transient hybrid gene pools even though extinction may be imminent. We explore the cultural barriers to using tools such as genetic rescue and make suggestions for overcoming those barriers. We focus mainly on examples from animals, but the same evolutionary processes are ongoing in other life forms and are subject to the same cultural barriers.  相似文献   

9.
Understanding the risk of local extinction of a species is vital in conservation biology, especially now when anthropogenic disturbances and global warming are severely changing natural habitats. Local extinction risk depends on species traits, such as its geographical range size, fresh body mass, dispersal ability, length of flying period, life history variation, and how specialized it is regarding its breeding habitat. We used a phylogenetic approach because closely related species are not independent observations in the statistical tests. Our field data contained the local extinction risk of 31 odonate (dragonflies and damselflies) species from Central Finland. Species relatedness (i.e., phylogenetic signal) did not affect local extinction risk, length of flying period, nor the geographical range size of a species. However, we found that closely related species were similar in hind wing length, length of larval period, and habitat of larvae. Both phylogenetically corrected (PGLS) and uncorrected (GLM) analysis indicated that the geographical range size of species was negatively related to local extinction risk. Contrary to expectations, habitat specialist species did not have higher local extinction rates than habitat generalist species nor was it affected by the relatedness of species. As predicted, species’ long larval period increased, and long wings decreased the local extinction risk when evolutionary relatedness was controlled. Our results suggest that a relatively narrow geographical range size is an accurate estimate for a local extinction risk of an odonate species, but the species with long life history and large habitat niche width of adults increased local extinction risk. Because the results were so similar between PGLS and GLM methods, it seems that using a phylogenetic approach does not improve predicting local extinctions.  相似文献   

10.
Interspecific hybridization is common in nature but can be increased in frequency or even originated by human actions, such as species introduction or habitat modification, which may threaten species persistence. When hybridization occurs between distantly related species, referred to as “distant hybridization,” the resulting hybrids are generally infertile or fertile but do not undergo chromosomal recombination during gametogenesis. Here, we present a model describing this frequent but poorly studied interspecific hybridization to assess its consequences on parental species and to anticipate the conditions under which they can reach extinction. Our general model fully incorporates three important processes: density-dependent competition, dominance/recessivity inheritance of traits and assortative mating. We demonstrate its use and flexibility by assessing population extinction risk between Atlantic salmon and brown trout in Norway, whose interbreeding has recently increased due to farmed fish releases into the wild. We identified the set of conditions under which hybridization may threaten salmonid species. Thanks to the flexibility of our model, we evaluated the effect of an additional risk factor, a parasitic disease, and showed that the cumulative effects dramatically increase the extinction risk. The consequences of distant hybridization are not genetically, but demographically mediated. Our general model is useful to better comprehend the evolution of such hybrid systems and we demonstrated its importance in the field of conservation biology to set up management recommendations when this increasingly frequent type of hybridization is in action.  相似文献   

11.
Habitat destruction, often caused by anthropogenic disturbance, can lead to the extinction of species at an unprecedented rate. It is important, therefore, to consider habitat destruction when assessing population viability. Another factor often ignored in population viability analysis, is the Allee effect that adds to the risk of populations already on the verge of extinction. Understanding the Allee effect on species dynamics and response to habitat destruction has intrinsic value in conservation prioritization. Here, the Allee effect was considered in a multi-species hierarchical competition model. Results showed that species persistence declines dramatically due to the Allee effect, and certain species become more susceptible to habitat destruction than others. Two extinction orders emerged under habitat destruction: either the best competitor becomes extinct first or the best colonizer first. The extinction debt and order, as well as the time lag between habitat destruction and species extinction, were found to be determined by species abundance and the intensity of the Allee effect.  相似文献   

12.
Although both niche‐based and neutral processes are involved in community assembly, most models on the effects of habitat loss are stochastic, assuming neutral communities mainly affected by ecological drift and random extinction. Given that habitat loss is considered the most important driver of the current biodiversity crisis, unraveling the processes underlying the effects of habitat loss is critical from both a theoretical and an applied perspective. Here we unveil the importance of niche‐based and neutral processes to species extinction and community assembly across a gradient of habitat loss, challenging the predictions of neutral models. We draw on a large dataset containing the distribution of 3653 individuals of 42 species, representing 35% of the small mammal species of the Atlantic Forest hotspot, obtained in 68 sites across three continuously‐forested landscapes and three adjacent 10 000‐ha fragmented landscapes differing in the amount of remaining forest (50%, 30% and 10%). By applying a null‐model approach, we investigated β‐diversity patterns by detecting deviations of observed community similarity from the similarity between randomly assembled communities. Species extinction following habitat loss was decidedly non‐random, in contrast to the notion that fragmented communities are mainly driven by ecological drift. Instead, habitat loss led to a strong biotic homogenization. Moreover, species composition changed abruptly at the same level of landscape‐scale habitat loss that has already been associated with a drastic decline in species richness. Habitat loss, as other anthropogenic disturbances, can thus be seen as a strong ecological filter that increases (rather than decreases) the importance of deterministic processes in community assembly. As such, critical advances for the development of conservation science lie on the incorporation of the relevant niche traits associated with extinction proneness into models of habitat loss. The results also underscore the fundamental importance of pro‐active measures to prevent human‐modified landscapes surpassing critical ecological thresholds.  相似文献   

13.
Habitat loss and the limits to endangered species recovery   总被引:3,自引:0,他引:3  
Canada is one of the last places on earth with extensive wilderness areas, yet the number of Canadian species threatened with extinction continues to rise every year. Using satellite‐derived land use data, we find that habitat loss explains most of the variation in numbers of endangered species across Canada. Habitat loss within species ranges is, therefore, likely to be the leading factor inhibiting their recovery. We measured habitat loss individually within the known ranges of 243 terrestrial species at risk of extinction across Canada. Recovery potential, as measured by extent of natural habitat within each species’ range, is bimodally distributed, but less than 50% of the range of the majority of Canada's species at risk is natural habitat and there is no detectable habitat remaining for 16 of the 243 species at risk. There were no differences in the recovery potential of species categorized either by threat level (special concern, threatened, or endangered) or taxon. Despite having extensive wilderness areas, Canada has similar rates of endangerment to other countries in the Americas, underlining the effect of severe habitat loss to intensive agriculture that has occurred in Canada's most biologically diverse regions. Improvements to protected areas networks and especially cooperative conservation activities with private landowners will do the most to improve the recovery prospects of species at risk in Canada.  相似文献   

14.
In times of severe environmental changes and resulting shifts in the geographical distribution of animal and plant species it is crucial to unravel the mechanisms responsible for the dynamics of species’ ranges. Without such a mechanistic understanding, reliable projections of future species distributions are difficult to derive. Species’ ranges may be highly dynamic. One particularly interesting phenomenon is range contraction following a period of expansion, referred to as ‘elastic’ behaviour. It has been proposed that this phenomenon occurs in habitat gradients, which are characterized by a negative cline in selection for dispersal from the range core towards the margin, as one may find, for example, with increasing patch isolation. Using individual‐based simulations and numerical analyses we show that Allee effects are an important determinant of range border elasticity. If only intra‐specific processes are considered, Allee effects are even a necessary condition for ranges to exhibit elastic behavior. The eco‐evolutionary interplay between dispersal evolution, Allee effects and habitat isolation leads to lower colonization probability and higher local extinction risk after range expansions, which result in an increasing amount of marginal sink patches and consequently, range contraction. We also demonstrate that the nature of the gradient is crucial for range elasticity. Gradients which do not select for lower dispersal at the margin than in the core (especially gradients in patch size, demographic stochasticity and extinction rate) do not lead to elastic range behavior. Thus, we predict that range contractions are likely to occur after periods of expansion for species living in gradients of increasing patch isolation, which suffer from Allee effects.  相似文献   

15.
Sudden catastrophic events like fires, hurricanes, tsunamis, landslides and deforestation increase population densities in habitat fragments, as fleeing animals encroach into these refuges. Such sudden overcrowding will trigger transient fluctuations in population size in the refuges, which may expose refuge populations to an increased risk of extinction. Until recently, detailed information about the operation of density dependence in stage-structured populations, and tools for quantifying the effects of transient dynamics, have not been available, so that exploring the extinction risk of such transient fluctuations has been intractable. Here, we use such recently developed tools to show that extinction triggered by overcrowding can threaten populations in refuges. Apart from situations where density dependence acts on survival, our results indicate that short-lived species may be more at risk than longer-lived species. Because dynamics in local populations may be critical for the preservation of metapopulations and rare species, we argue that this aspect warrants further attention from conservation biologists.  相似文献   

16.
The identification of environmental factors linked to increased risk of local extinction often relies on inference from patterns of distribution. Yet for declining populations, the assumption of population equilibrium that underlies species distribution models is violated. Measures such as individual condition can provide a more direct indication of extinction risk, and can start to be detected before declines commence. We compared distribution-based and condition-based approaches to identifying factors affecting habitat suitability for an area-sensitive passerine, the eastern yellow robin Eopsaltria australis, in eastern Australia. We compared patterns of individual condition between robins and several common, more mobile species (Meliphagid honeyeaters and yellow thornbills Acanthiza nana). Robin presence was not affected by landscape context, but robins avoided sites with a more grassy ground layer. However, robins inhabiting landscapes with less remnant woodland had higher ratios of heterophils to lymphocytes in peripheral blood, indicating higher long-term stress. No clear spatial patterns of condition were detected for the more mobile species. Our findings suggest a hierarchical model of habitat suitability, whereby robins avoid grassy sites, but where they do occur are in poorest condition when inhabiting less-vegetated landscapes. We predict greater rates of local extinction of robins from such landscapes. The use of indicators of individual condition, in addition to distribution data, can unveil otherwise cryptic factors as important influences on habitat quality. As habitat occupancy does not always reflect habitat quality, exploring patterns in condition indices can complement species distribution modelling, potentially revealing threats to persistence before population declines have commenced.  相似文献   

17.
Aim Habitat loss and degradation pose a major threat to biodiversity, which can result in the extinction of habitat characteristic species. However, many species exhibit a delayed response to environmental changes because of the slow intrinsic dynamics of populations, resulting in extinction debt. We assess directly the changes in habitat characteristic species composition by comparing historical (1923) and current inventories in highly fragmented grasslands. We aim to characterize the species that constitute extinction debt in European calcareous grasslands. Location Europe, Estonia, 59–60° N, 24–25° E. Methods We related eleven life‐history traits and selected habitat preferences to local extinctions of populations in grasslands where extinction debt has been largely paid. Traits were chosen to describe species dispersal and persistence abilities and were quantified from databases. Results The studied grasslands have lost 90% of their area and 30% of their characteristic plant populations in 90 years. Species more prone to local population extinction were characterized by shorter life span, self‐pollination, a lack of clonal growth, fewer seeds per shoot, lower average height, lower soil nitrogen preference and higher requirements for light, indicating a limited ability to tolerate the range of changes in biotic and abiotic conditions of the sites. Locally extinct populations were also characterized by wind‐dispersed seeds, lower seed weight and lower terminal velocity of seeds, suggesting that species strategies for long‐distance dispersal are not favoured in highly fragmented landscapes. Thus, both increased habitat isolation and decreased habitat quality are important in determining local population extinction. Main conclusions Populations more prone to local extinction were characterized by a number of life‐history traits, demonstrating a greater extinction risk for species with poorer abilities for local persistence and competition. Our results can be applied to less degraded grasslands where the extinction debt is not yet paid to determine those species most susceptible to future extinction.  相似文献   

18.
Overfishing is a major environmental problem in the oceans. In addition to the direct loss of the exploited species, the very act of fishing, particularly with mobile bottom gear, destroys habitat and ultimately results in the loss of biodiversity. Furthermore, overfishing can create trophic cascades in marine communities that cause similar declines in species richness. These effects are compounded by indirect effects on habitat that occur through removal of ecological or ecosystem engineers. Mass removal of species that restructure the architecture of habitat and thus increase its complexity or influence the biogeochemistry of sediments could have devastating effects on local biodiversity and important water–sediment processes. The possible overexploitation of engineering species requires more attention because the consequences extend beyond their own decline to affect the rest of the ecosystem. This is particularly problematic in the deep ocean, where oil and gas exploration and fishing pressure are likely to increase.  相似文献   

19.
Late Pleistocene extinctions are of interest to paleontological and anthropological research. In North America and Australia, human occupation occurred during a short period of time and overexploitation may have led to the extinction of mammalian megafauna. In northern Eurasia megafaunal extinctions are believed to have occurred over a relatively longer period of time, perhaps as a result of changing environmental conditions, but the picture is much less clear. To consider megafaunal extinction in Eurasia, we compare differences in the geographical distribution and commonness of extinct and extant species between paleontological and archaeological localities from the late middle Pleistocene to Holocene. Purely paleontological localities, as well as most extinct species, were distributed north of archaeological sites and of the extant species, suggesting that apart from possible differences in adaptations between humans and other species, humans could also have a detrimental effect on large mammal distribution. However, evidence for human overexploitation applies only to the extinct steppe bison Bison priscus. Other human-preferred species survive into the Holocene, including Rangifer tarandus, Equus ferus, Capreolus capreolus, Cervus elaphus, Equus hemionus, Saiga tatarica, and Sus scrofa. Mammuthus primigenius and Megaloceros giganteus were rare in archaeological sites. Carnivores appear little influenced by human presence, although they become rarer in Holocene archaeological sites. Overall, the data are consistent with the conclusion that humans acted as efficient hunters selecting for the most abundant species. Our study supports the idea that the late Pleistocene extinctions were environmentally driven by climatic changes that triggered habitat fragmentation, species range reduction, and population decrease, after which human interference either by direct hunting or via indirect activities probably became critical.  相似文献   

20.

Identifying the correlates of extinction can help prioritize species for conservation effort, an important step when developing effective conservation policies. Most previous studies on extinction vulnerability have been restricted to a single predictor within a specific region. To understand the mechanism underlying predictors of extinction risk, an examination of the contribution of various factors at different scales is an important step. We investigated the contribution of phylogeny, ploidy level, habitat breadth, and life form on both provincial and national conservation ranks of Alberta’s prairie ecoregion plant species. We collected data on conservation status, chromosome number, habitat breadth, and life form for 1274 species. We used phylogenetic comparative models to assess (1) the relative contribution, significance, and possible interaction of predictor variables in determining extinction vulnerability, and (2) the possible underlying mechanisms governing observed patterns of extinction vulnerability at the provincial and national level. We find that the contribution, significance, and predictive power of variables were often scale-dependent. While the impact of habitat breadth was significant at both provincial and national scales, ploidy and life form was only significant at the national and provincial level, respectively. We also found a significant negative interaction between ploidy and habitat breadth at both geographical scales, such that among widespread species (species with a higher habitat breadth), diploids are less likely to be at risk than polyploids. Our study reveals the importance of the study scale on the accuracy of extinction prediction. We also suggest that discriminating between regionally restricted and non-restricted species could improve the predictability of sub-global extinction patterns.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号