首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The projections of phrenic nerve afferents to neurons in the dorsal (DRG) and ventral (VRG) respiratory group were studied in anesthetized, paralyzed, and vagotomized cats. Extracellular recordings of neuronal responses to vagal nerve and cervical phrenic nerve stimulation (CPNS) indicated that about one-fourth of the DRG respiratory-modulated neurons were excited by phrenic nerve afferents with an onset latency of approximately 20 ms. In addition, non-respiratory-modulated neurons within the DRG were recruited by CPNS. Although some convergence of vagal and phrenic afferent input was observed, most neurons were affected by only one type of afferent. In contrast to the DRG, only 3 out of 28 VRG respiratory-modulated neurons responded to CPNS. A second study determined that most of these neuronal responses were due to activation of diaphragmatic afferents since 90% of the DRG units activated by CPNS were also excited at a longer latency by thoracic phrenic nerve stimulation. The difference in onset latency of neuronal excitation indicates an afferent peripheral conduction velocity of about 10 m/s, which suggests that they are predominately small myelinated fibers (group III) making paucisynaptic connections with DRG neurons. Decerebration, decerebellation, and bilateral transection of the dorsal columns at C2 do not abolish the neuronal responses to cervical PNS.  相似文献   

2.
Neuronal recordings, microstimulation, and electrolytic and chemical lesions were used to examine the involvement of the B?tzinger Complex (B?tC) in the bilateral phrenic-to-phrenic inhibitory reflex. Experiments were conducted in decerebrate cats that were paralyzed, ventilated, thoracotomized, and vagotomized. Microelectrode recordings within the B?tC region revealed that some neurons were activated by phrenic nerve stimulation (15 of 69 expiratory units, 9 of 67 inspiratory units, and 19 nonrespiratory-modulated units) at average latencies similar to the onset latency of the phrenic-to-phrenic inhibition. In addition, microstimulation within the B?tC caused a short latency transient inhibition of phrenic motor activity. In 17 cats phrenic neurogram responses to threshold and supramaximal (15 mA) stimulation of phrenic nerve afferents were recorded before and after electrolytic B?tC lesions. In 15 animals the inhibitory reflex was attenuated by bilateral lesions. Because lesion of either B?tC neurons or axons of passage could account for this attenuation, in eight experiments the phrenic-to-phrenic inhibitory responses were recorded before and after bilateral injections of 5 microM kainic acid (30-150 nl) into the B?tC. After chemical lesions, the inhibitory response to phrenic nerve stimulation remained; however, neuronal activity typical of the B?tC could not be located. These results suggest that axons important in producing the phrenic-to-phrenic reflex pass through the region of the B?tC, but that B?tC neurons themselves are not necessary for this reflex.  相似文献   

3.
Respiratory afferent stimulation can elicit increases in respiratory motor output that outlast the period of stimulation by seconds to minutes [short-term potentiation (STP)]. This study examined the potential contribution of spinal mechanisms to STP in anesthetized, vagotomized, paralyzed rats. After C(1) spinal cord transection, stimulus trains (100 Hz, 5-60 s) of the C(1)-C(2) lateral funiculus elicited STP of phrenic nerve activity that peaked several seconds poststimulation. Intracellular recording revealed that individual phrenic motoneurons exhibited one of three different responses to stimulation: 1) depolarization that peaked several seconds poststimulation, 2) depolarization during stimulation and then exponential repolarization after stimulation, and 3) bistable behavior in which motoneurons depolarized to a new, relatively stable level that was maintained after stimulus termination. During the STP, excitatory postsynaptic potentials elicited by single-stimulus pulses were larger and longer. In conclusion, repetitive activation of the descending inputs to phrenic motoneurons causes a short-lasting depolarization of phrenic motoneurons, and augmentation of excitatory postsynaptic potentials, consistent with a contribution to STP.  相似文献   

4.
Similowski, Thomas, Selma Mehiri, Alexandre Duguet,Valérie Attali, Christian Straus, and Jean-Philippe Derenne.Comparison of magnetic and electrical phrenic nerve stimulation inassessment of phrenic nerve conduction time. J. Appl.Physiol. 82(4): 1190-1199, 1997.Cervicalmagnetic stimulation (CMS), a nonvolitional test of diaphragm function,is an easy means for measuring the latency of the diaphragm motorresponse to phrenic nerve stimulation, namely, phrenic nerve conductiontime (PNCT). In this application, CMS has some practical advantagesover electrical stimulation of the phrenic nerve in the neck (ES).Although normal ES-PNCTs have been consistently reported between7 and 8 ms, data are less homogeneous for CMS-PNCTs, with some reportssuggesting lower values. This study systematically compares ES-and CMS-PNCTs for the same subjects. Surface recordings ofdiaphragmatic electromyographic activity were obtained for sevenhealthy volunteers during ES and CMS of varying intensities. Onaverage, ES-PNCTs amounted to 6.41 ± 0.84 ms and were littleinfluenced by stimulation intensity. With CMS, PNCTs were significantlylower (average difference 1.05 ms), showing a marked increase as CMSintensity lessened. ES and CMS values became comparable for a CMSintensity 65% of the maximal possible intensity of 2.5 Tesla. Thesefindings may be the result of phrenic nerve depolarization occurringmore distally than expected with CMS, which may have clinicalimplications regarding the diagnosis and follow-up of phrenic nervelesions.

  相似文献   

5.
Field potentials (FP) and responses of single neurones to electrical stimulation of vibrissal pads have been recorded in motor cortex in the albino mature and developing rats. The FPs were characterized by 3-phasic shape and high stability in mature rats. The FPs evoked by contralateral stimuli have a range of onset latency of 4 to 24 ms (peak of distribution 8-11 ms); those to ipsilateral stimuli have a latency of 4 to 23 ms (peak of distribution 12-16 ms). Responses of single neurones were evoked with a latency of 9 to 20 ms. Usually, the FPs were evoked by both contralateral and ipsilateral stimulation, and in some tracks were effective only ipsilateral stimuli in the developing rats beginning from the 11th day of life. The FPs in such animals were less stable and more fatigable. During 2-4 weeks of life, FPs evoked by contralateral stimulation appeared with a latency of 15 to 46 ms; during the same period, a latency of single unit responses ranged between 20 to 33 ms. The FPs to ipsilateral stimuli appeared with a latency of 18 to 47 ms, a latency of single unit responses of 27 to 47 ms. The results indicate functional immaturity of vibrissal system up to the end of the first month of rat life.  相似文献   

6.
Recent evidence has suggested that phrenic nerve afferents can influence respiratory motor drive. This paper presents a technique whereby the activity of single phrenic nerve afferents can be recorded from uncut dorsal root filaments. Cervical dorsal roots 4, 5, and 6 were exposed by dorsal laminectomy in 10 anesthetized, spontaneously breathing cats. A stimulating electrode was placed on the right whole phrenic nerve low in the neck. The animal was then placed in a spinal suspension frame. Dissection of the dorsal root filaments was performed with probes made of fine tungsten wire. Single filaments were isolated intact from the dorsal root fascicles and placed across a tungsten electrode. Fiber classification was performed by determining conduction velocity. Monopolar recordings were made from a total of 38 fibers. Tonic activity was observed in 21, respiratory-related activity was evident in 15, and two fibers were silent but could be recruited by phrenic nerve stimulation. The conduction velocities ranged from 2.2 to 103 m/s. Approximately one-half of the fibers had conduction velocities of less than 20 m/s. This technique offers a way to record the activity of diaphragm afferents while maintaining the integrity of possible reflex pathways. Application of this method should prove helpful in elucidating the possible role of the various diaphragm afferents in the control of respiratory motor drive.  相似文献   

7.
We tested two hypotheses: 1) that the spontaneous enhancement of phrenic motor output below a C2 spinal hemisection (C2HS) is associated with plasticity in ventrolateral spinal inputs to phrenic motoneurons; and 2) that phrenic motor recovery in anesthetized rats after C2HS correlates with increased capacity to generate inspiratory volume during hypercapnia in unanesthetized rats. At 2 and 4 wk post-C2HS, ipsilateral phrenic nerve activity was recorded in anesthetized, paralyzed, vagotomized, and ventilated rats. Electrical stimulation of the ventrolateral funiculus contralateral to C2HS was used to activate crossed spinal synaptic pathway phrenic motoneurons. Inspiratory phrenic burst amplitudes ipsilateral to C2HS were larger in the 4- vs. 2-wk groups (P<0.05); however, no differences in spinally evoked compound phrenic action potentials could be detected. In unanesthetized rats, inspiratory volume and frequency were quantified using barometric plethysmography at inspired CO2 fractions between 0.0 and 0.07 (inspired O2 fraction 0.21, balance N2) before and 2, 3, and 5 wk post-C2HS. Inspiratory volume was diminished, and frequency enhanced, at 0.0 inspired CO2 fraction (P<0.05) 2-wk post-C2HS; further changes were not observed in the 3- and 5-wk groups. Inspiratory frequency during hypercapnia was unaffected by C2HS. Hypercapnic inspiratory volumes were similarly attenuated at all time points post-C2HS (P<0.05), thereby decreasing hypercapnic minute ventilation (P<0.05). Thus increases in ipsilateral phrenic activity during 4 wk post-C2HS have little impact on the capacity to generate inspiratory volume in unanesthetized rats. Enhanced crossed phrenic activity post-C2HS may reflect plasticity associated with spinal axons not activated by our ventrolateral spinal stimulation.  相似文献   

8.
Ventilation and electromyogram (EMG) activities of the right hemidiaphragm, parasternal intercostal, triangularis sterni, transversus abdominis, genioglossus, and alae nasi muscles were measured before and during central stimulation of the left thoracic phrenic nerve in 10 alpha-chloralose anesthetized vagotomized dogs. Pressure in the carotid sinuses was fixed to maintain baroreflex activity constant. The nerve was stimulated for 1 min with a frequency of 40 Hz and stimulus duration of 1 ms at voltages of 5, 10, 20, and 30 times twitch threshold (TT). At five times TT, no change in ventilation or EMG activity occurred. At 10 times TT, neither tidal volume nor breathing frequency increased sufficiently to reach statistical significance, although the change in their product (minute ventilation) was significant (P less than 0.05). At 20 and 30 times TT, increases in both breathing frequency and tidal volume were significant. At these stimulus intensities, the increases in ventilation were accompanied by approximately equal increases in the activity of the diaphragm, parasternal, and alae nasi muscles. The increase in genioglossus activity was much greater than that of the other inspiratory muscles. Phrenic nerve stimulation also elicited inhomogeneous activation of the expiratory muscles. The transversus abdominis activity increased significantly at intensities from 10 to 30 times TT, whereas the activity of the triangularis sterni remained unchanged. The high stimulation intensities required suggest that the activation of afferent fiber groups III and IV is involved in the response. We conclude that thin-fiber phrenic afferent activation exerts a nonuniform effect on the upper airway, rib cage, and abdominal muscles and may play a role in the control of respiratory muscle recruitment.  相似文献   

9.
The effects of phrenic nerve cooling at 0 degrees C on the nerve and diaphragmatic function were evaluated in dogs. Eleven dogs, anesthetized and mechanically ventilated, were studied. Left diaphragmatic function was assessed by recording the transdiaphragmatic pressure (Pdi) generated during electrical stimulation of the left phrenic nerve at different frequencies (0.5, 30, and 100 Hz). Phrenic nerve stimulations were achieved either directly by electrodes placed around the phrenic nerve above its pericardial course or by intramuscular electrodes placed close to the phrenic nerve endings. Electrical activity of the hemidiaphragm (Edi) was recorded and phrenic nerve conduction time (PNCT) was measured during direct phrenic stimulation. A transpericardial cooling of the nerve, at 0 degrees C, on a length of 1 cm, was performed during 30 min (group A, n = 7) or 5 min (group B, n = 4). After the cooling period, phrenic and diaphragmatic functions were assessed hourly for 4 h (H1-H4). Cooling the phrenic nerve produced a complete phrenic nerve conduction block in all dogs, 100 +/- 10 s after the onset of cold exposure. Conduction recovery time was longer in group A (11 +/- 7 min) than in group B (2 +/- 0.5 min) and PNCT remained increased throughout the study in group A. Furthermore, in group A, Pdi and Edi during direct phrenic stimulation were markedly depressed from H1 to H4. No change in these parameters was noted until H3 during intramuscular stimulation, time at which a significant decrease occurred. By contrast, Pdi and Edi from direct and intramuscular stimulations remained unchanged throughout the study in group B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

11.
Chemical activation of thin-fiber phrenic afferents: respiratory responses   总被引:2,自引:0,他引:2  
In supine chloralose-anesthetized and mechanically ventilated dogs, we assessed the effects of group III and IV thin-fiber phrenic afferents on cardiorespiratory control by injecting capsaicin into the phrenic artery of an in situ isolated and innervated left diaphragm. Inspiratory motor drive was assessed by measuring the electromyogram of left and right diaphragm, left parasternal, and mylohyoid muscles in five protocols. 1) Three boluses (2 ml) of capsaicin (1, 10, and 50 micrograms/ml) were injected 30 min apart. Only the 50-micrograms/ml injection elicited a significant increase in arterial pressure, heart rate, and inspiratory motor drive. 2) Repeated doses of capsaicin were tested. The pressor and hyperpneic responses were weakened. 3) High doses of capsaicin (100 and 500 micrograms/ml) were given. Hyperpneic and pressor responses were similar to those elicited by the 50-micrograms/ml dose. 4) When the left phrenic nerve was sectioned, the pressor and hyperpneic responses to the 50-micrograms/ml injection were abolished. 5) Capsaicin (50 micrograms/ml) was infused into the arterial supply of the in situ vascularly isolated and innervated gastrocnemius. Arterial pressure, breathing frequency, and inspiratory motor drive to all inspiratory muscles increased significantly and to a greater degree than in the diaphragm. In conclusion, diaphragmatic thin-fiber afferents have an excitatory effect on the inspiratory motor drive and arterial pressure that is similar to that seen in limb muscles.  相似文献   

12.
Excitatory and inhibitory responses of sympathetic discharge were recorded in single renal postganglionic neurons of rabbits anaesthetized with urethane and chloralose. The animals were vagotomized and had transected aortic nerves. Responses were elicited by single volleys in the aortic C-fibres. Excitatory responses consisted in short-lasting increase in the rate of ongoing sympathetic discharge and were followed by inhibitory responses. Excitatory effects together with inhibitory responses were seen in 68% of units (19/28). Only excitatory effects appeared in 2 neurons (7.1%) and only inhibitory effects in 7 neurons (25%). In renal neurons exhibiting both effects, the excitatory responses appeared after latency of 172 +/- 8 ms (x +/- S.D.) and had duration of 64 +/- 11 ms. Inhibitory effects had latency o f 257 +/- 10 ms and their duration amounted to 265 +/- 22 ms. In more than half of recordings the excitatory responses were separated from the inhibitory effects by discharge lasting 33 +/- 4 ms. Significant correlations between latencies of excitatory and inhibitory responses and between duration of excitatory and latency of inhibitory responses suggest interaction between both effects. Increase in the number of afferent volleys (1 through 5) evoked relatively small changes in duration of the excitatory effect indicating that temporal facilitation is of minor importance in generating this response. Temporal facilitation was found to play an important role in determining duration of the inhibitory response. Comparison of effects of unilateral and bilateral stimulation of the aortic C-fibres showed larger occlusion of durations of the excitatory than inhibitory responses.  相似文献   

13.
Phrenic nerve afferents (PNa) have been shown to activate neurons in the spinal cord, brain stem, and forebrain regions. The c-Fos technique has been widely used as a method to identify neuronal regions activated by afferent stimulation. This technique was used to identify central neural areas activated by PNa. The right phrenic nerve of urethane-anesthetized rats was stimulated in the thorax. The spinal cord and brain were sectioned and stained for c-Fos expression. Labeled neurons were found in the dorsal horn laminae I and II of the C3-C5 spinal cord ipsilateral to the site of PNa stimulation. c-Fos-labeled neurons were found bilaterally in the medial subnuclei of the nucleus of the solitary tract, rostral ventral respiratory group, and ventrolateral medullary reticular formation. c-Fos-labeled neurons were found bilaterally in the paraventricular and supraoptic hypothalamic nuclei, in the paraventricular thalamic nucleus, and in the central nucleus of the amygdala. The presence of c-Fos suggests that these neurons are involved in PNa information processing and a component of the central mechanisms regulating respiratory function.  相似文献   

14.
We compared the rate of relaxation of the diaphragm (RRdi) after unilateral phrenic nerve stimulation, bilateral phrenic nerve stimulations, and short sharp voluntary contractions (sniffs). RRdi was measured as the maximum rate of decline in transdiaphragmatic pressure (Pdi) corrected for the change in Pdi [maximum relaxation rate (MRR)/delta Pdi], the time constant (tau) of the later exponential decline in Pdi, and the time to half relaxation (1/2 RT). In five subjects there was no difference in mean RRdi apart from a smaller MRR/delta Pdi (P less than 0.05) for left unilateral compared with either right unilateral or bilateral needle stimulation. However, RRdi varied unpredictably between unilateral and bilateral stimulation of the phrenic nerve in individual subjects. In the same five subjects, sniffs were found to have a slower RRdi than bilateral stimulations (MRR/delta Pdi 0.0064 +/- 0.0007 vs. 0.0074 +/- 0.0018/ms, tau 57.2 +/- 8.7 vs. 48.2 +/- 7.4 ms, 1/2 RT 108.9 +/- 10.9 vs. 73.9 +/- 6.0 ms; all P less than 0.05). The application and inflation of an abdominal binder to an external pressure of 60 mmHg resulted in a decrease in functional residual capacity (-710 +/- 70 ml), but there was no effect on relaxation parameters. Our findings suggest that in the evaluation of RRdi 1) unilateral hemidiaphragmatic stimulations may not accurately reflect the in vivo contractile properties of the diaphragm, 2) sniff maneuvers are not voluntary equivalents of phrenic nerve stimulations, and 3) RRdi is not affected by abdominal binder inflation up to 60 mmHg.  相似文献   

15.
Chemical activation of upper cervical spinal neurons modulates activity of thoracic respiratory interneurons in rats. The aim of the present study was to examine the effects of chemical activation of C(1)-C(2) spinal neurons on thoracic spinal respiratory motor outflows. Electroneurograms of left phrenic (n = 23) and intercostal nerves (ICNs, n = 93) between T(3) and T(8) spinal segments were recorded from 36 decerebrated, vagotomized, paralyzed, and ventilated male rats. To activate upper cervical spinal neurons, glutamate pledgets (1 M, 1 min) were placed on the dorsal surface of the C(1)-C(2) spinal cord. Glutamate on C(1)-C(2) increased ICN tonic activity in 56/59 (95%) ICNs. The average maximal tonic activity of ICN was increased by 174% (n = 59). After spinal transection at rostral C(1), glutamate on C(1)-C(2) still increased ICN tonic activity in 33/35 ICNs. However, the effects of C(1)-C(2) glutamate on ICN phasic activity were highly variable, with observations of augmentation or suppression of both inspiratory and expiratory discharge. C(1)-C(2) glutamate augmented the average amplitude of phrenic burst by 20%, whereas the increases in amplitude of ICN inspiratory activity, when they occurred, averaged 120%. The burst rate of phrenic nerve discharge was decreased from 34.2 +/- 1.6 to 26.3 +/- 2.0 (mean +/- SE) breaths/min during C(1)-C(2) glutamate. These data suggested that upper cervical propriospinal neurons might play a role in descending modulation of thoracic respiratory and nonrespiratory motor activity.  相似文献   

16.
It has been demonstrated that phrenic nerve afferents project to somatosensory cortex, yet the sensory pathways are still poorly understood. This study investigated the neural responses in the thalamic ventroposteriolateral (VPL) nucleus after phrenic afferent stimulation in cats and rats. Activation of VPL neurons was observed after electrical stimulation of the contralateral phrenic nerve. Direct mechanical stimulation of the diaphragm also elicited increased activity in the same VPL neurons that were activated by electrical stimulation of the phrenic nerve. Some VPL neurons responded to both phrenic afferent stimulation and shoulder probing. In rats, VPL neurons activated by inspiratory occlusion also responded to stimulation on phrenic afferents. These results demonstrate that phrenic afferents can reach the VPL thalamus under physiological conditions and support the hypothesis that the thalamic VPL nucleus functions as a relay for the conduction of proprioceptive information from the diaphragm to the contralateral somatosensory cortex.  相似文献   

17.
PurposeTo measure phrenic nerve conduction velocity in the neck in humans.ScopeWe studied 15 healthy subjects (9 men, 32.4 ± 6.7). We performed bipolar electrical phrenic stimulation in the neck, from a distal and a proximal stimulation site, and recorded diaphragm electromyographic responses on the surface of the chest. The ratio of the between-site distance to the latency difference provided phrenic velocities. Ulnar motor velocity was assessed similarly. In addition, five homogeneous patients with Charcot-Marie-Tooth disease type 1A (CMT1A) were studied for validation purposes. We obtained diaphragmatic responses from the two stimulation sites in all cases. The distal latencies (anterior axillary line recording) were 6.51 ± 0.63 ms (right) and 6.13 ± 0.64 ms (left). The minimal between site distance was 39 mm. Phrenic motor velocity was 55.2 ± 6.3 m s?1 (right) and 56.3 ± 7.2 m s?1 (left). In CMT1A, phrenic velocities were 17.1 ± 8.1 m s?1 (from 7 to 32 m s?1) and were similar to ulnar and median velocities.ConclusionsPhrenic nerve velocities can be estimated in humans and compare with upper limb motor conduction velocities. This should refine the investigation of phrenic function in peripheral neuropathies.  相似文献   

18.
Motor unit territories supplied by primary branches of the phrenic nerve   总被引:1,自引:0,他引:1  
Recent studies have demonstrated that, under certain circumstances, the diaphragm does not contract as a homogeneous unit. These observations suggest that motor units may not be randomly distributed throughout the muscle but confined to localized subvolumes. In the present study, electromyographic (EMG) and glycogen depletion methods were combined to investigate the organization of motor units supplied by the primary branches of the phrenic nerve in the cat. Four primary branches are generally present, one branch to the crus and three branches to the sternocostal region. The gross motor-unit territory of each of the four phrenic primary branches was determined by stimulating each nerve separately, while recording from nine EMG electrodes distributed over the hemidiaphragm. Stimulation of the crural branch evoked activity in the ipsilateral crus, whereas stimulation of each of the remaining branches evoked activity in discrete but overlapping areas of the sternocostal diaphragm. A more precise analysis of the distribution and borders of the motor territories was obtained by mapping regions depleted of muscle glycogen due to stimulation of each primary branch for 90 min. Glycogen depletion results closely matched the EMG findings of a localized distribution of motor units served by single primary branches. Stimulation of the crural branch typically caused depletion of the ipsilateral crus, whereas the sternocostal branches each served a striplike compartment. In the majority of cases, the borders of the sternocostal compartments were relatively abrupt and consisted of a 1- to 2-mm transition zone of depleted and nondepleted fibers. These studies demonstrate that motor unit territories of the primary branches of the phrenic nerve are highly delineated. This compartmentalization provides the central nervous system with the potential for a more precise regional motor control of costal and crural diaphragm than previously suspected.  相似文献   

19.
1. Intersegmental interneurons (INs) that participate in the larval bending reflex and the pupal gin trap closure reflex were identified in the isolated ventral nerve cord of Manduca sexta. INs 305, 504, and 703 show qualitatively different responses in the pupa than in the larva to electrical stimulation of sensory neurons that are retained during the larval-pupal transition to serve both reflexes. Action potentials produced by current injected into the 3 interneurons excite motor neurons that are directly involved in the larval and pupal reflexes. The excitation of the motor neurons is not associated with EPSPs at a fixed latency following action potentials in the interneurons, and thus there do not seem to be direct synaptic connections between the interneurons and the motor neurons. 2. IN 305 (Fig. 2) has a lateral soma, processes in most of the dorsal neuropil ipsilateral to the soma, and a crossing neurite that gives rise to a single contralateral descending axon. IN 305 is excited by stimulation of the sensory nerve ipsilateral to its soma in the larva and the pupa. Stimulation of the sensory nerve contralateral to its soma produces an inhibitory response in the larva, but a mixed excitatory/inhibitory response to the identical stimulus in the pupa. 3. IN 504 (Fig. 3) has a lateral soma, processes throughout most of the neuropil ipsilateral to the soma, and a crossing neurite that bifurcates to give rise to a process extending to the caudal limit of the neuropil and an ascending axon. IN 504 is excited by stimulation of the sensory nerve ipsilateral to its soma in both larvae and pupae, while the response to stimulation of the sensory nerve contralateral to its soma is inhibitory in the larva but mixed (excitatory/inhibitory) in the pupa. 4. IN 703 has a large antero-lateral soma, a neurite that extends across to the contralateral side giving rise to processes located primarily dorsally in both ipsilateral and contralateral neuropils, and two axons that ascend and descend in the connectives contralateral to the soma (Fig. 4). IN 703 responds to stimulation of the sensory nerves on either side of the ganglion, but the form of the response changes during the larval-pupal transition. In the larva, the response consists of very phasic (0-2 spikes) excitation, but in the pupa there is a prolonged excitation that greatly outlasts the stimulus (Fig. 6).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
1. The first part of this study looks at spontaneously active neurons located in the rostral ventrolateral medulla (RVLM) with projections to the thoracic spinal cord. Sixteen neurons were intracellularly recorded in vivo. Four out of 16 neurons were antidromically activated from the thoracic spinal cord (axonal conduction velocities varied from 1.8 m/s to 9.5 m/s).2. The simultaneous averages of the neuronal membrane potential and arterial blood pressure triggered by the pulsatile arterial wave or the EKG-R wave demonstrated changes in membrane potential (hyperpolarization or depolarization) locked to the cardiac cycle in four neurons in this group. These neurons (three of them bulbospinal) were further tested for barosensitivity by characterizing the responses to electrical stimulation of the aortic depressor nerve. Four neurons responded with inhibitory hyperpolarizing responses characterized as inhibitory postsynaptic potentials (IPSP) to aortic nerve stimulation (onset latency: 32.3 ± 5.0 ms; mean ± SEM).3. In two neurons in the RVLM, one of them characterized as barosensitive, electrical stimulation of the opposite RVLM (0.5 Hz, 1.0 ms pulse duration, 25–100 A) elicited excitatory postsynaptic potentials (EPSPs) with latencies of 9.07 and 10.5 ms. At resting membrane potential, the onset latency of the evoked EPSPs did not change with increasing stimulus intensities. Some of the recorded neurons were intracellularly labelled with biocytin for visualization. They were found in the RVLM.4. These experiments in vivo would support the idea of a functional commissural pathway between the RVLM of both sides.5. Anatomical data have shown that some of those commissural bundle fibers originate in the C1 adrenergic neuronal group in the RVLM. In the second part of this study, we used an intracellular recording technique in vitro to investigate the effects of the indirect adrenergic agonist tyramine on neurons in the RVLM with electrophysiological properties similar to premotor sympathetic neurons in vivo.6. Tyramine (0.5–1 mM) produced a pronounced inhibitory effect with hyperpolarization and increase in membrane input resistance on two neurons characterized as regularly firing (R), and on one neuron characterized as irregularly firing (I). This effect was preceded by a transient depolarization with increases in firing rate.7. These results would indicate that neurons in the RVLM recorded in vitro and with properties similar to premotor sympathetic neurons can be modulated by catecholamines released from terminals probably making synaptic contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号