首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of vasopressin antagonists   总被引:3,自引:0,他引:3  
Antagonists of the physiological actions of vasopressin can be useful probes for detecting the influences of endogenous vasopressin on cardiovascular regulation. Antagonists that block vascular receptors of the V1 type have been widely used for this purpose. Recently effective antagonists of renal antidiuretic receptors of the V2 type have become available, and we have made progress toward improving their specificity for V2 receptors. Vasopressin antagonists of both types of responses could become useful in the diagnosis and treatment of pathophysiological states in which elevated levels of circulating vasopressin may disturb cardiovascular and renal functions.  相似文献   

2.
Defining how the agonist-receptor interaction differs from that of the antagonist-receptor and understanding the mechanisms of receptor activation are fundamental issues in cell signalling. The V1a vasopressin receptor (V1aR) is a member of a family of related G-protein coupled receptors that are activated by neurohypophysial peptide hormones, including vasopressin (AVP). It has recently been reported that an arginyl in the distal N-terminus of the V1aR is critical for binding agonists but not antagonists. To determine specific features required at this locus to support high affinity agonist binding and second messenger generation, Arg46 was substituted by all other 19 encoded amino acids. Our data establish that there is an absolute requirement for arginyl, as none of the [R46X]V1aR mutant constructs supported high affinity agonist binding and all 19 had defective signalling. In contrast, all of the mutant receptors possessed wildtype binding for both peptide and nonpeptide antagonists. The ratio of Ki to EC50, an indicator of efficacy, was increased for all substitutions. Consequently, although [R46X]V1aR constructs have a lower affinity for agonist, once AVP has bound all 19 are more likely than the wildtype V1aR to become activated. Therefore, in the wildtype V1aR, Arg46 constrains the inactive conformation of the receptor. On binding AVP this constraint is alleviated, promoting the transition to active V1aR. Our findings explain why arginyl is conserved at this locus throughout the evolutionary lineage of the neurohypophysial peptide hormone receptor family of G-protein coupled receptors.  相似文献   

3.
Solid preclinical evidence links vasopressin to social behavior in animals, so, extensive work has been initiated to find new vasopressin V1a receptor antagonists which can improve deteriorated social behavior in humans and can treat the core symptoms of autistic behavior, as well. Our aim was to identify new chemical entities with antagonizing effects on vasopressin V1a receptors. Starting from a moderately potent HTS hit (7), we identified a molecule (49) having nanomolar binding strength and functional activity, which is in the same range as the potency of clinically tested V1a antagonists.  相似文献   

4.
Solid preclinical evidence links vasopressin to social behavior in animals, so, extensive work has been initiated to find new vasopressin V1a receptor antagonists which can improve deteriorated social behavior in humans and can treat the core symptoms of autistic behavior, as well. Our aim was to identify new chemical entities with antagonizing effects on vasopressin V1a receptors. Continuing our previous work, we found an in vitro and in vivo orally active V1a selective antagonist molecule (40) among [1,2,4]triazolo[4,3-a][1]benzazepines.  相似文献   

5.
To identify and characterize V1 vasopressin receptors, photoreactive antagonists of the glycogenolytic and vasoconstrictor activity of vasopressin have been synthesized. The following analogues with 3-mercapto-3,3-cyclopentamethylene-propionic acid (Mca) and N-methylalanine (MeAla) in position 1 and 7 of vasopressin (VP) were effective V1 antagonists: [Mca1, D-Tyr2, MeAla7, Lys8]VP (1), [Mca1, MeAla7, Arg8, Lys9]VP (2), [Mca1, MeAla7, Arg8, D-Lys9]VP (3). Introduction of the photoreactive 4-azidophenylamidino group into the side-chain of Lys8 in analogue 1 or into Lys9 in analogues 2 and 3 increased the potency (for analogue 1 a tenfold increase in the antiglycogenolytic effect and a fivefold increase in the antivasopressor effect) and binding affinity for the rat hepatic V1 receptor. Mono-iodination at Tyr2 with 125I resulted in photoreactive antagonists of high specific radioactivity, which had roughly the same binding affinity as vasopressin for the rat hepatic V1 receptor (Kd = 0.9-1.8 nM). In photoaffinity labelling experiments with purified rat liver membranes, containing 2--3 pmol V1 receptor/mg protein, the analogues labelled specifically two proteins with the relative molecular masses (Mr) of 30,000 and 38,000. These results and the results of a recent study using 3H-labelled photoreactive vasopressin agonists [Boer, R. and Fahrenholz, F. (1985) J. Biol. Chem. 260, 15051-15054] provide evidence that both vasopressin agonists and antagonists can interact with the same two subunits of the heterodimeric hepatic V1 receptor. Furthermore the radioiodinated photoreactive V1 antagonists should be helpful to identify V1 receptor proteins in membranes of other cell types.  相似文献   

6.
Vasopressin-induced phosphatidylinositol turnover and mobilization of intracellular Ca2+ was studied using an established smooth muscle cell line (A-10). The cells were subcloned to ensure a monoclonal cell population. The accumulation of inositol mono-, di-, and tris-phosphates (IP1, IP2, and IP3, respectively), and the mobilization of intracellular Ca2+ were dependent on the time of incubation and the concentration of arginine vasopressin (AVP). IP1, IP2, and IP3 were significantly elevated after 15 sec and remained elevated for up to 2 hr. The concentrations of AVP required for half-maximal stimulation of IP1, IP2, and IP3 formation were 2, 12, and 4 nM, respectively. LiCl was required to observe the accumulation of inositol phosphates in response to AVP. Significant 45Ca2+ efflux was observed within 15 sec after exposure to AVP. By employing the vasopressin receptor subtype selective antagonists [d(CH2)5Tyr(Me)AVP, V1; d(CH2)5D-Tyr(Et)VAVP,V1/V2; d(CH2) 5D-IleVAVP,V2] and agonists [AVP, V1/V2; dDAVP, V2; dVDAVP, V2], we found that the vasopressin-induced stimulation of phosphatidylinositol turnover and 45Ca2+ efflux were mediated by receptors of the vascular V1 subtype. Pertussis toxin pretreatment partially inhibited vasopressin-induced phosphatidylinositol turnover. These data demonstrate that activation of V1 receptors of vascular smooth muscle cells resulted in enhanced phosphatidylinositol turnover and mobilization of intracellular Ca2+.  相似文献   

7.
Vasopressin V2 receptor was expressed in Xenopus laevis oocytes which were injected with poly(A) +RNA from porcine kidney cell line LLC-PK1. Pharmacological antagonism of the expressed V2 receptor was observed between arginine vasopressin and two potent and selective vasopressin antagonists: [d(CH2)5, D2-Phe2 Ile4, Ala9-NH2]arginine vasopressin and [d(CH2)5,D-Ile2, Ile4]arginine vasopressin. Activation constant for arginine vasopressin concentration was 1.32 x 10(-10)M. The nucleotide length of the mRNA encoding for vasopressin V2 receptor was deduced to be approximately 2 kilobases.  相似文献   

8.
Cells from the zona glomerulosa of rat adrenals were isolated and maintained for 3 days in primary culture. Specific vasopressin binding was determined by using [3H]vasopressin. [3H]Vasopressin binding was time-dependent (half-time of about 2 min for 6 nM free ligand) and reversible on addition of unlabelled vasopressin (80% dissociation within 30 min). Dose-dependent [3H]vasopressin binding at equilibrium indicated that vasopressin interacted with two populations of sites: high-affinity sites (dissociation constant, Kd = 1.8 nM; maximal binding capacity = 10 fmol/10(6) cells) and low-affinity sites. Vasopressin increased the cellular content of labelled inositol mono-, bis- and tris-phosphate in cells prelabelled with myo-[3H]inositol. The vasopressin concentration eliciting half-maximal inositol phosphate accumulation was very close to the Kd value for vasopressin binding to high-affinity sites. Competition experiments using agonists and antagonists with enhanced selectivity for previously characterized vasopressin receptors indicated that vasopressin receptors from rat glomerulosa cells are V1 receptors of the vascular or hepatic subtype. The detected specific vasopressin-binding sites might represent the specific receptors mediating the mitogenic and steroidogenic effects of vasopressin on glomerulosa cells from rat adrenals.  相似文献   

9.
We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3–TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

10.
Vasopressin receptor antagonists can elicit ion-sparing diuretic effects (i.e., aquaresis) in vivo by blunting the action of the circulating hypophyseal hormone arginine vasopressin. We have identified two new series of basic tricyclic benzodiazepines, represented by general structure 1, which contain compounds that bind with high affinity to human V2 receptors. For example, (S)-(+)-8 and 5 are potent and selective V2 receptor antagonists with pronounced aquaretic activity in rats on oral administration.  相似文献   

11.
Summary We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3-TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

12.
A series of substituted spirobenzazepines was prepared and evaluated as V(1a) and V(2) dual vasopressin receptor antagonists. Compounds 7p and 7q have been shown to be not only potent inhibitors of vasopressin receptors, but also have exhibited an excellent overall pharmaceutical suitability profile.  相似文献   

13.
Structural and dynamic properties of [8-arginine]vasopressin and a class of highly potent vasopressin V1 antagonists which contain 3-mercapto-3,3-cyclopentamethylene propionic acid (Mca) in position 1 of the vasopressin sequence have been determined. On the basis of two-dimensional NMR experiments in dimethyl sulfoxide solution, interproton distances were derived according to which model conformations were built and refined using molecular dynamics simulations. The conformation of vasopressin and the V1 antagonists differ mainly in the region of the mutated residue. The antagonistic property was found to be related to an inversed chirality of the disulfide bridge. In all investigated molecules, characteristic beta-turn structure elements were found for the backbone conformation of the endocyclic residues Tyr2-Asn5. For this portion of the peptide sequence, various conformational equilibria were detected which matched different time scales. For [Arg8]vasopressin, averaged NMR parameters were obtained which could be explained by rapid interconversion between different beta-turn geometries, whereas multiple slowly exchanging conformations were observed for the V1 antagonists. V1 antagonists containing sarcosine in position 7 exhibited multiple spectral patterns for the exocyclic part attributed to cis/trans isomerization. The X-ray structure of deamino-oxytocin [Wood, S. P., Tickle, I. J., Treharne, A. M., Pitts, J. E., Mascarenhas, Y., Li, J. Y., Husain, J., Cooper, S., Blundell, T. L., Hruby, V. J., Buku, A., Fischman, A. J. & Wyssbrod, H. R. (1986) Science 232, 633-636] was found to represent one sample of the conformational space covered by the multiple conformations found for [Mca1, Arg8]vasopressin.  相似文献   

14.
This presentation will trace the serendipitous discovery of novel vasopressin (VP) hypotensive agonists d(CH2)5[D-Tyr(Et)2,X3]VAVP (where X = Arg, Lys). These peptides were uncovered as part of an ongoing program aimed at the design of potent and selective VP antidiuretic (V2 receptor) antagonists. We will also present highlights of our subsequent preliminary studies seeking (i) to design high affinity radioiodinatable ligands for the localization and characterization of the putative VP vasodilatory (V1c?) receptor; (ii) to identify the structural features of selective and non-selective cyclic and linear VP and oxytocin (OT) antagonists of the V2 receptor, the vascular (V1a) receptor and of the uterine (OT) receptor required for hypotensive agonism and; (iii) to enhance hypotensive potency. These novel VP hypotensive agonists could serve as valuable research tools in studies on the roles of VP in blood pressure regulation and may also lead to the development of a new class of therapeutically useful antihypertensives.  相似文献   

15.
The amino acid sequence of guinea pig MSEL-neurophysin has been determined using tryptic peptides derived from the performic acid-oxidized protein and staphylococcal proteinase peptides obtained from the reduced-carboxamidomethylated neurophysin. Guinea pig MSEL-neurophysin consists of a 93-residue polypeptide chain that shows 12 substitutions and 2 deletions when compared to bovine MSEL-neurophysin. It displays the highest number of variations among known mammalian MSEL-neurophysins. These variations are mainly found in the C-terminal region (residues 88-93). Moreover guinea pig MSEL-neurophysin, like rat homologous protein, exhibits substitutions in positions 2, 5, 29 and 81 and lacks an arginine in the penultimate position. Comparison between eight mammalian MSEL-neurophysins reveals a highly conserved region (residues 1 to 88) and a hypervariable region (residues 89 to 93/95). On the other hand the eight species examined are endowed with arginine vasopressin except pig, which has a lysine vasopressin. In the vasopressin-MSEL-neurophysin precursor, the hormonal moiety and the MSEL region of neurophysin (residues 1-9) are encoded by a common exon in ox, rat and man; it can be concluded that this exon is evolutionarily conservative in contrast to the one encoding the C-terminal region of MSEL-neurophysin.  相似文献   

16.
Novel tricyclic benzazepine derivatives were synthesized as arginine vasopressin (AVP) antagonists. Several tricyclic compounds showed potent antagonistic activity in rat AVP receptors V(1a) and V(2). Derivatives containing pyrrolo-tricyclic amines, 13i-k, 30, and 31 also showed selectivity for the V(2) receptor.  相似文献   

17.
We have continued to explore spirobenzazepines as vasopressin receptor antagonists to follow up on RWJ-339489 (2), which had advanced into preclinical development. Further structural modifications were pursued to find a suitable backup compound for human clinical studies. Thus, we identified carboxylic acid derivative 3 (RWJ-676070; JNJ-17158063) as a potent, balanced vasopressin V(1a)/V(2) receptor antagonist with favorable properties for clinical development. Compound 3 is currently undergoing human clinical investigation.  相似文献   

18.
The synthesis and biological testing of a novel series of nonpeptide vasopressin receptor antagonists, containing a bridged bicyclic nucleus, are reported. Variation of substituents (R(1)-R(3)) in general formula 3, and the configuration of the stereocenter, resulted in potent V(2)-selective (e.g., 5) and balanced dual V(1a)/V(2) (e.g., 10) compounds. Data from receptor binding, cell-based functional, and in vivo assays are presented [corrected]  相似文献   

19.
Vasopressin administered into the ventral septum exerts a dose-related antipyresis. This site of action is similar in a number of species. The fever-reducing properties of vasopressin are both site and neuropeptide specific. Evidence supporting a role for endogenous vasopressin in fever suppression is the demonstration that the release of the peptide from the ventral septal area is altered during fever: the amount released correlates negatively with febrile changes in body temperature. In addition, changes in the concentration of vasopressin in the septum and amygdala have been demonstrated immunocytochemically during fever: an activation of vasopressinergic neurons occurs which is similar to that observed in pregnant animals at term when fever is absent. Specific antibodies directed against vasopressin or specific vasopressin antagonist analogues (e.g., d(CH2)5Tyr(Me)AVP) enhanced the febrile response to a pyrogen challenge when injected into the ventral septum. The same antagonist also can antagonize the antipyretic effect of exogenously administered vasopressin. The use of relatively specific antagonists and agonists of vasopressin, directed against the V1 and V2 subtypes of the peripheral vasopressin receptor, suggests that the central receptor responsible for the antipyretic effect of vasopressin may resemble the V1 subtype. Recent experiments using electrophysiological techniques have demonstrated the existence of thermoresponsive units in the ventral septal area whose activity may be altered by vasopressin which is possibly derived from the paraventricular nucleus and bed nucleus of the stria terminalis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The complete amino acid sequence (123 residues) of histone H2A from erythrocytes of the marine worm Sipunculus nudus, has been established from data provided by automated sequence analysis of large fragments generated by V8 staphylococcal protease digestion of histone H2A and by limited hydrolysis of the protein with alpha-chymotrypsin and from structural studies of tryptic peptides of the protein. By comparison with calf homologous histone, the sipunculid histone H2A shows 6 deletions and 13 substitutions. Six of the substitutions are non-conservative. Most of the evolutionary changes are mainly observed in the basic amino-terminal and carboxy-terminal regions of the molecule, which are the primary DNA-binding sites. Few conservative point changes are observed in the central region (residues 18-118) which interacts strongly with histone H2B to form the dimer H2A-H2B. 60% of the H2A molecules were found phosphorylated on the amino-terminal residue, N-acetyl-serine. The high content of phosphorylated histone H2A in the sipunculid erythrocyte chromatin could probably be related to smaller repeat length (177 +/- 5 base pairs) of nucleosomal DNA and to nuclear inactivation and chromatin condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号