首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of Chinese hamster ovary cells in which 10 per cent of the thymine of one DNA strand was substituted with bromouracil (BU) was compared with normal cells following u.v. irradiation. The bromouracil substitution resulted in a 21/2 fold enhancement of both u.v.-induced killing and mutation induction at the HGPRT locus. These BU-photoproducts do not, however, result in any further inhibition of DNA replication or inhibition of the repair of u.v.-induced DNA photoproducts identified as antibody-binding sites.  相似文献   

2.
A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. An examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. The thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; during exposure to electric field 24 hr before u.v. irradiation; 24 hr after u.v. irradiation; and up to 48 hr continuously after u.v. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

3.
Prior irradiation of non-lysogenic bacteria by ultraviolet light leads to an increase in the viability of infecting irradiated λ phage (ultraviolet reactivation). Similarly, u.v. irradiation of wild type or uvrD bacteria lysogenic for λcIind? increased the fraction of closed circular duplex phage DNA molecules formed after infection with u.v.-irradiated λ phage. The closed circular molecules isolated from the irradiated lysogens were shown to be free from u.v. damage by a spheroplast transfection assay. The increase of closed circular molecules is sufficient to explain the ultraviolet reactivation observed by the increase of viability of irradiated phage.In ultraviolet reactivation, damage must be erased on irradiated DNA molecules and the repair is independent of total replication of phage genomes, exchange of sister chromatids or recombination between phage genomes. Protein synthesis is necessary to increase the level of closed circular molecules of irradiated λ phage after irradiation of bacteria.  相似文献   

4.
Summary Prophage is not induced when DNA synthesis ceases at 42°C in a mutant of E. coli which is unable to initiate rounds of DNA replication at high temperature. However, induction occurs when the cells are UV irradiated after completion of rounds of replication at 42°C. Evidence is presented that the uvr functions, necessary for dimer excision, are not required for this induction, and that the UV irradiation itself does not provoke net host DNA synthesis under these conditions. We conclude that prophage induction can result from irradiation damage in chromosomes that are unable to replicate.  相似文献   

5.
The responses to u.v. of two cell lines derived from the Indian muntjac are described. The u.v. sensitivity of the diploid cell falls within the range of most normal mammalian cells while the other, a heteroploid cell, transformed by SV40, is much more sensitive to killing. This hypersensitivity cannot be explained by defective excision repair: the two cell types are indistinguishable in this activity as judged by inhibitor-associated DNA break accumulation and unscheduled DNA synthesis. Rather, the SV40 transformed cells have a pronounced inability to recover normal DNA replication after u.v. These cells are, therefore, defective in a post-replication recovery mechanism and in this respect resemble the behaviour of the variant form of xeroderma pigmentosum. Their limited ability to recover normal levels of RNA synthesis after u.v. hints at the complexity of the phenotype.  相似文献   

6.
The DNA photoproduct responsible for the ultraviolet (u.v.)-induced targeted -1 frameshift mutation is unknown. Based on mutagenesis studies by others, we surmised that this lesion might be found in high abundance in single-stranded DNA. u.v. irradiation of the single-stranded alternating copolymer poly[d(G-T)] yielded a photoproduct that was characterized in detail. It consists of a thymine-thymine cyclobutane dimer of predominantly cis-syn configuration occurring between non-adjacent thymidyl residues on the same strand. Its formation is strongly inhibited in double-stranded DNA. A similar u.v. photoproduct was obtained in higher yield from the polypyrimidine alternating copolymer poly[d(C-T)] under conditions in which it is single-stranded. It is proposed that replication across the unrepaired photoproduct: (formula; see text) is the cause of the targeted u.v.-induced -1 frameshift mutation.  相似文献   

7.
REPAIR DNA SYNTHESIS IN DIFFERENTIATED EMBRYONIC MUSCLE CELLS   总被引:4,自引:1,他引:3       下载免费PDF全文
The differentiation of embryonic skeletal muscle cells is closely coupled with the cessation of normal DNA replication. Once these cells begin to differentiate, they normally never undergo semiconservative replication of DNA during the entire life time of the muscle cell. Cessation of DNA synthesis has been shown to be accompanied by a loss of 80–90% of the replicative DNA polymerase activity of these cells. Despite this loss the studies reported here demonstrate that muscle cells retain the ability to synthesize DNA of a repair type after UV irradiation. These results suggest that the control exercised over semiconservative DNA synthesis during differentiation of these cells does not extend to repair synthesis after UV irradiation.  相似文献   

8.
Fusion between mitotic and interphase cells results in the premature condensation of the interphase chromosomes into a morphology related to the position in the cell cycle at the time of fusion. These prematurely condensed chromosomes (PCC) have been used in conjunction with u.v. irradiation to examine the interphase chromosome condensation cycle of HeLa cells. The following observations have been made: (I) There is a progressive decondensation of the chromosomes during G1 which is accentuated by u.v. irradiation: (2) The chromosomes become more resistant to u.v.-induced decondensation during G2 and mitosis. (3) There is a close correlation between the degree of chromosome decondensation and the amount of unscheduled DNA synthesis induced by u.v. irradiation during G1 and mitosis: (4) Hydroxyurea enhances the ability of u.v. irradiation to promote the decondensation of chromosomes during G1, G2 and mitosis. Hydroxyurea also potentiates the lethal action of u.v. irradiation during mitosis and G1. These data are discussed in relation to the suggestion that chromosomes undergo a progressive decondensation during G1 and condensation during G2.  相似文献   

9.
Summary Post-irradiation DNA degradation in P. mirabilis rec + strains after UV irradiation is found to be more extensive in starvation buffer than in growth medium. In growth medium restriction of protein synthesis, but not DNA synthesis, largely prevents the expression of breakdown limitation. By the addition of chloramphenicol during post-irradiation incubation in growth medium the expression of break-down limitation was followed and found to occur 20 to 40 min after UV irradiation. Pre-irradiation by a low dose of UV leads after a corresponding time of post-irradiation incubation to breakdown limitation even in starvation buffer after a second UV exposure.Post-irradiation DNA degradation is presumed to be initiated at the sites of DNA lesions which arise at replication points damaged by UV. While pre-starvation restricts the efficiency of postirradiation DNA degradation by the reduction of the number of replication points active at the time of irradiation, caffeine as well as 2,4-dinitrophenol inhibit DNA degradation even in rec - cells probably by the interference with nicking or exonucleoltytic events initiated at those sites in the absence of breakdown limitation.Breakdown limitation is postulated to be due to inducible derepression of REC-functions which lead to the protection and, probably, repair of DNA lesions arising at the replication points following UV exposure.  相似文献   

10.
A radioautographic examination of nuclear DNA synthesis in unirradiated and u.v.-irradiated HeLa cells, in the presence and in the absence of aphidicolin, showed that aphidicolin inhibits nuclear DNA replication and has no detectable effect on DNA repair synthesis. Although the results establish that in u.v.-irradiated HeLa cells most of the DNA repair synthesis is not due to DNA polymerase alpha, they do not preclude a significant role for this enzyme in DNA repair processes.  相似文献   

11.
The heritable DNA repair defect in human Xeroderma D cells, which results in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for the dominant marker plus resistance to killing by u.v. light, have been shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation have been correlated both with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most of the transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. These results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell.  相似文献   

12.
Abstract. A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. an examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. the thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; (i) during exposure to electric field 24 hr before U.V. irradiation; (ii) 24 hr after U.V. irradiation; and (iii) up to 48 hr continuously after U.V. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

13.
The filling of about one third of postreplication DNA gaps in u.v.-irradiated Micrococcus luteus ATCC 4698 is blocked by chloramphenicol (CA) added just before irradiation. Addition of CA 15 min after u.v.-irradiation does not prevent the complete repair of the gaps. U.v.-sensitive M. luteus mutants (ML 6 and ML 15) are identified as defective in different steps of inducible postreplication DNA repair (PRR). PRR in unexcising M. luteus strain G7 is accompanied by the transfer of about 20% of pyrimidine dimers from parental to daughter DNA strands, which indicates the existance of recombinational pathway of PRR. Recombinational PRR in M. luteus is not inhibited by CA.  相似文献   

14.
Nuclear factor I (NFI) is a HeLa sequence-specific DNA-binding protein that is required for initiation of adenovirus (Ad) DNA replication and may be involved in the expression of several cellular genes. The interaction between NFI and its binding site on the Ad2 origin has been studied. Methylation interference and protection, u.v. irradiation of 5-BrdU substituted DNA and ethylation interference revealed major groove contacts with G and T, and phosphate backbone contacts. Computer stereographics show that the contacts are located in two blocks showing dyad symmetry to each other and 22 out of 23 contacts are accessible from one side of the helix. Inversion of the NFI binding site did not change the NFI dependent stimulation of Ad2 DNA replication in a reconstituted system. All data are compatible with NFI binding as a dimer at one side of the DNA helix.  相似文献   

15.
The effect of ultraviolet irradiation on the growth and occurrence of legionella and other heterotrophic bacteria in a circulating cooling water system was studied. Water of the reservoir was circulated once in 28 h through a side-stream open channel u.v. radiator consisting of two lamps. Viable counts of legionellas and heterotrophic bacteria in water immediately after the u.v. treatment were 0—12 and 0·7—1·2% of those in the reservoir, respectively. U.v. irradiation increased the concentration of easily assimilable organic carbon. In the u.v. irradiated water samples incubated in the laboratory the viable counts of heterotrophic bacteria reached the counts in reservoir water within 5 d. The increase in viable counts was mainly due to reactivation of bacterialcells damaged by u.v. light, not because of bacterial multiplication. Despite u.v. irradiation the bacterial numbers in the reservoir water, including legionellas, did not decrease during the experimental period of 33 d. The main growth of bacteria in the reservoir occurred in biofilm and sediment, which were never exposed to u.v. irradiation.  相似文献   

16.
R Wu  J L Wu    Y C Yeh 《Journal of virology》1975,16(1):5-16
Nonsense mutants in gene 59 (amC5, amHL628) were used to study the role of this gene in the repair of UV-damaged and alkylated DNA of bacteriophage T4 in vivo. The higher sensitivity to UV irradiation and alkylation of gene 59 mutants after exposure to these agents was established by a comparison of the survival fractions with wild type. Zonal centrifugal analysis of both parental and nascent mutant intracellular DNA molecules after UV irradiation showed that immediately after exposure the size of single-stranded DNA fragments was the same as the wild-type intracellular DNA. However, the capability of rejoining fragmented intracellular DNA was greatly reduced in the mutant. In contrast, the wild-type-infected cells under the same condition resumed DNA replication and repaired its DNA to normal size. Methyl methanesulfonate induced more randomly fragmented intracellular DNA, when compared to UV irradiation. The rate of rejoining under these conditions as judged from their sedimentation profiles was also greatly reduced in mutant-infected cells. Further evidence is presented that UV repair is not a simple consequence of arrested DNA replication, which is a phenotype of the mutant when infected in a nonpermissive host, Escherichia coli B (su minus), but rather that the DNA repair function of gene 59 is independent of the replication function. These and other data presented indicate that a product(s) of gene 59 is essential for both repair of UV lesions and repair of alkylation damage of DNA in vivo. It is suggested that gene 59 may have two functions during viral development: DNA replication and replication repair of DNA molecules.  相似文献   

17.
The uptake, expression and genomic integration of exogenous DNA during DNA-mediated gene transfer are poorly understood in mammalian cells. We studied the effects of ionizing radiation and u.v. light treatments on recipient cells during gene transfer experiments. We found that both X-rays and u.v. light stimulate pSV2-gpt DNA transfer into V79 Chinese hamster cells and they are equally effective for an equi-cytotoxic dose. This result was observed with irradiation both before and after the period of DNA precipitate overlay of the recipient cells. The stimulation of DNA transfer was approximately proportional to dose for both types of radiation. The effect was significantly enhanced using chronic, rather than acute, radiation treatments. The optimal expression time to observe stimulation of DNA transfer, however, differs for the two radiation types. A possible model for DNA-mediated gene transfer, incorporating this result, is discussed.  相似文献   

18.
We investigated the differential repair of DNA lesions induced by bifunctional mitomycin C, monofunctional decarbamoyl mitomycin C and ultraviolet irradiation in normal human, Xeroderma pigmentosum and Fanconi's anemia cells using assays for the survival of clone-forming ability, alkaline sucrose sedimentation and hydroxyapatite chromatography of DNA. Four FA cell lines exhibited about 5 to 15 times higher sensitivity to MC killing, despite normal resistance to u.v. and DMC, than did normal human cells. The XP cells, however, were highly sensitive to u.v. and DMC killings due to their deficiency in excision repair, but the cells unexpectedly had an almost normal capacity for surviving MC and repairing the MC interstrand cross-links.In experiments to determine the sedimentation velocity of the DNA in alkaline sucrose gradients, normal and XP cells showed evidence for single-strand cutting following MC treatment. The sedimentation velocity of the DNA covalently cross-linked by MC in an FA strain was 2.5 times faster than that of the untreated control, and remained unaltered during post-incubation due to the lack of half-excision4 of cross-links. However, FA cells, but not XP cells, had the normal ability to incise DNA with the DMC monoadducts. Hydroxyapatite chromatography revealed the reversibly bihelical property of MC cross-linked DNA after denaturation. Normal and XP cells lost such reversibility during post-MC incubation as the result of cross-link removal with first-order kinetics (half-life = 2 h). The three FA lines studied exhibited two- to eightfold reduced rates of cross-link removal than normal and XP cells, indicating a difference in the repair deficiency of the FA strain. Thus we have been led to conclude that FA cells may have different levels of deficiency in half-excision repair of interstrand cross-links induced by MC, despite having normal mechanisms for repair of u.v.-induced pyrimidine dimers and DMC monoadducts, and vice versa in XP cells.  相似文献   

19.
rnh mutations of Escherichia coli inactivating RNase H activity allow the initiation of rounds of DNA replication in the absence of protein synthesis (stable DNA replication). However, levels of RNase H did not change during or after the induction of stable DNA replication in rnh+ strains by incubation with nalidixic acid or UV irradiation.  相似文献   

20.
The influence of the growth delay induced by near u.v. radiation on the SOS response was monitored by comparing the level of sfiA expression by means of a sfiA::lacZ fusion in both a nuvA+ cell and an isogenic nuvA mutant. The mutant lacks 4-thiouridine in its tRNA and does not exhibit the near u.v.-induced growth delay. Although the two strains exhibit similar sfiA induction levels after 254 nm irradiation, their behaviour is different after illumination with near u.v. light, including solar u.v. Inducibility is 10-20 times higher in the nuvA mutant than in the parent strain. Furthermore, pre-illumination with broad band near u.v. light does not affect the 254 nm-induced sfiA response in the mutant but reduces it by a factor of 3-4 in the parent strain. The kinetics of sfiA induction in near u.v.-illuminated nuvA+ cells, whether treated with 254 nm light or not, is unusual and follows the growth curve: only after 50 min is sfiA derepression observed. It can be concluded that (i) near u.v.-induced DNA lesions are able to trigger the SOS response and (ii) the growth delay effect reduces this response, whether triggered by u.v. or near u.v. light. Hence 4-thiouridine in tRNA acts as a built-in antiphotomutagenic 'device' protecting Escherichia coli cells against mutagenesis and the induction of the SOS response by near u.v. light and sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号