首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肌成纤维细胞在纤维化疾病中的研究进展   总被引:1,自引:0,他引:1  
肌成纤维细胞是一种超微结构和生理功能介于平滑肌细胞和成纤维细胞之间的高度分化型细胞,具有很强的分泌细胞外基质及收缩的功能。本文就肌成纤维细胞的形态学特征,及其在肺、肝和肾纤维化疾病发生发展中的生物学行为进行综述。  相似文献   

2.
Common bile duct ligation leads to bile accumulation and liver fibrosis. In this model, little attention has been dedicated to the modification of the common bile duct. We have studied by histochemistry and immunohistochemistry, 3 and 5 days after ligation, the connective tissue modifications of the common bile duct wall. After bile duct ligation, compared with normal bile duct, a strong increase of the bile duct diameter, due to bile stasis, and a thickness of the bile duct wall were observed; numerous myofibroblasts expressing α-smooth muscle actin appeared in parallel with the detection of many proliferating connective tissue cells. These myofibroblasts secreted very early high amount of elastic fibre components, elastin and fibrillin-1. Elastic fibre increase was also observed close to the epithelial cell layer. Procollagen type III deposition was also induced 3 days after ligation but decreased thereafter, underlining that myofibroblasts modify their synthesis of extracellular matrix components to comply with the request. We show here that common bile duct ligation represents an invaluable model to study myofibroblastic differentiation and extracellular matrix adaptation produced by an acute mechanical stress.  相似文献   

3.
Lefty is a novel member of the transforming growth factor (TGF) supergene family which has the potential to antagonise actions of TGF-β1 - the main factor driving fibrotic disease in the kidney and in other organs. TGF-β1 can induce fibrosis through several mechanisms, including epithelial-mesenchymal transition (EMT) which contributes to myofibroblast accumulation in the renal interstitium. This study examined whether Lefty can antagonise TGF-β1 mediated EMT. A rat tubular epithelial cell line (NRK52E) was stably transfected with a Lefty expression plasmid (52E-Lefty) or control plasmid (52E-Control). 52E-Control cells underwent TGF-β1 induced EMT with up-regulation of α-smooth muscle actin (α-SMA), down-regulation of E-cadherin, and transition to an elongated fibroblast-like morphology. In contrast, 52E-Lefty cells were substantially protected from TGF-β1 induced EMT. Analysis of signalling pathways showed that 52E-Lefty cells had a marked reduction in TGF-β1 induced Smad activity and suppression of the secondary phase of JNK (but not p38) signalling. Treatment of NRK52E cells with a JNK inhibitor was shown to suppress TGF-β1 induced EMT. In conclusion, Lefty can antagonise TGF-β1 mediated EMT in renal tubular epithelial cells. Lefty may have potential as an anti-fibrotic molecule in the treatment of renal fibrosis.  相似文献   

4.
We evaluated whether ramipril, one of long-acting ACEIs, has a direct effect on pancreas islets in animal model of type 2 diabetes. OLETF rats were treated with ramipril for 24 weeks. We assessed the body weight, glucose tolerance, and the amount of islet fibrosis. RT-PCR and Western blot analysis of transforming growth factor-beta with its downstream signals were performed from the pancreas. Ramipril treatment remarkably reduced weight gain and the area under the curve of glucose. Islet fibrosis and the expression of TGF-beta with its downstream signal molecules were significantly reduced in the pancreas of ramipril-treated group than in control and paired-feeding group. These beneficial effects of ramipril might be related to the downregulation of TGF-beta and its downstream signals in OLETF rats. To our knowledge, this is the first report suggesting the potential effect of ramipril on the prevention of islet destruction by fibrosis in the animal model of type 2 diabetes mellitus.  相似文献   

5.
6.
The repair of alveolar structures following endotracheal administration of porcine pancreatic elastase (PPE) to mice involves the coordinated deposition of new matrix elements. We determined the induction of the myofibroblast phenotype following elastolytic injury to mouse lung by examining the expression of α-smooth muscle actin (α-SMA) by immunohistochemistry. We also examined elastin and α1(I) collagen mRNA expression by in situ hybridization. Changes in airspace dimensions were assessed by determining mean linear intercept. In untreated mice, α-SMA was localized to vascular structures and large airways, with no detectable expression in alveolar units. PPE induced α-SMA expression in damaged areas surrounding large vessels, in septal remnants, and in the opening ring of alveolar ducts. Elastin and α1(I) collagen mRNA expression were up-regulated in residual alveolar structures and septal walls. PPE dose-response studies indicated that α1(I) collagen and elastin mRNA expression were not induced in areas of normal lung adjacent to damaged lung. The administration of low dose PPE resulted in increased α-SMA protein and elastin mRNA expression in the cells comprising the opening ring of alveolar ducts. Our data suggest that repair mechanisms following elastolytic injury are confined to overtly damaged alveolar structures and involve the induction of the myofibroblast phenotype.  相似文献   

7.
8.
Modulation of the actin cytoskeleton in chondrocytes has been used to prevent or reverse dedifferentiation and to enhance protein synthesis. We have hypothesized that an actin-modifying agent, staurosporine, could be used with fibrochondrocytes to increase the gene expression and synthesis of critical fibrocartilage proteins. A range of concentrations (0.1–100 nM) was applied to fibrochondrocytes in monolayer and evaluated after 24 h and after 4 days. High-dose staurosporine treatment (10–100 nM) increased cartilage oligomeric matrix protein 60– to 500-fold and aggrecan gene expression two-fold. This effective range of staurosporine was then applied to scaffoldless tissue-engineered fibrochondrocyte constructs for 4 weeks. Whereas glycosaminoglycan synthesis was not affected, collagen content doubled, from 27.6 ± 8.8 μg in the untreated constructs to 55.2 ± 12.2 μg per construct with 100 nM treatment. When analyzed for specific collagens, the 10-nM group showed a significant increase in collagen type I content, whereas collagen type II was unaffected. A concomitant dose-dependent reduction was noted in construct contraction, reflecting the actin-disrupting action of staurosporine. Thus, staurosporine increases the gene expression for important matrix proteins and can be used to enhance matrix production and reduce contraction in tissue-engineered fibrocartilage constructs. The authors gratefully acknowledge NIAMS R01 AR 47839–2 for funding this work, and the Hertz Foundation for their support of G. Hoben.  相似文献   

9.
10.
The effects of milk growth factor (MGF) showed the transformation of ATDC5 prechondrocytes and differed from that of retinoic acid (RA) as follows. MGF (200 ng/ml) did not suppress the proliferation of ATDC5 cells, though RA (1 x 10(-7) M) suppressed the cell proliferation. However, MGF showed the result as RA, which was verified to suppress the production of proteoglycan. The synthesis of vimentin in ATDC5 cells was slightly induced by RA, but its withdrawal induced the large-scale induction and the fibril formation of vimentin, which may indicate that the cells became fibroblastic cells, namely dedifferentiation. MGF, which hardly induced the vimentin synthesis in ATDC5 cells, induced its synthesis under control by the withdrawal. MGF suppressed the synthesis of alpha-smooth muscle actin (alpha-SM-actin), which was apt to reverse in its withdrawal. However, RA did not affect this synthesis of ATDC5 cells. The combination of MGF and RA enlarged the cells and enhanced the synthesis of vimentin due to RA under control, however, almost terminated alpha-SM-actin-synthesis in the cells. And its effect is almost irreversible. Furthermore, the combination of MGF and RA prevented the induction of fibroblasts due to RA in the cells. And the withdrawal of the mixture transformed prechondrocytes into hypertrophic cells. Then, MGF contributes to bone metabolism in prechondrocyte.  相似文献   

11.
Stromal cell-derived factor 1 (CXCL12) is an angiogenic chemokine that is believed to act solely via its cognate receptor CXCR4. Evidence is now provided for the existence of a different CXCL12 binding and signaling receptor on endothelial cells. Bovine aortic endothelial cells (BAECs) strongly expressed CXCR4 and exhibited high binding capacity for fluorescently labeled CXCL12. However, CXCL12 binding was not correlated with the CXCR4 expression level and was virtually unaffected by the specific CXCR4 antagonists AMD3100 or T22. Similar observations were made in endothelial cells of mouse and human origin. Also, AMD3100 failed to block CXCL12 internalization and CXCL12-induced intracellular signal transduction via extracellular signal-regulated kinases 1/2 in BAECs. In contrast, CXCL12 binding and signaling were almost completely inhibited by the CXCR4 antagonist in T-lymphoid SupT1 cells. Together, our data point to the existence of an additional receptor through which CXCL12 exerts its biological effects in endothelial cells.  相似文献   

12.
Limb bud outgrowth in chicken embryos is initiated during the third day of development by Fibroblast Growth Factor 8 (FGF8) produced by the newly formed apical ectodermal ridge (AER). One of the earliest effects of this induction is a change in the properties of the limb field mesoderm leading to bulging of the limb buds from the body wall. Heintzelman et al. [Heintzelman, K.F., Phillips, H.M., Davis, G.S., 1978. Liquid-tissue behavior and differential cohesiveness during chick limb budding. J. Embryol. Exp. Morphol. 47, 1–15.] suggested that budding of the limbs is caused by a higher liquid-like cohesivity of limb bud tissue compared with flank. We sought additional evidence relevant to this hypothesis by performing direct measurements of the effective surface tension, a measure of relative tissue cohesivity, of 4-day embryonic chicken wing and leg bud mesenchymal tissue, and adjacent flank mesoderm. As predicted, the two types of limb tissues were 1.5- to 2-fold more cohesive than the flank tissue. These differences paralleled cell number and volume density differences: 4-day limb buds had 2- to 2.5-fold as many cells per unit area of tissue as surrounding flank, a difference also seen at 3 days, when limb budding begins. Exposure of flank tissue to exogenous FGF8 for 24 h increased its cell number and raised its cohesivity to limb-like values. Four-day flank tissue exhibited a novel and unique active rebound response to compression, which was suppressed by the drug latrunculin and therefore dependent on an intact actin cytoskeleton. Correspondingly, flank at this stage expressed high levels of α-smooth muscle actin (SMA) mRNA and protein and a dense network of microfilaments. Treatment of flank with FGF8 eliminated the rebound response. We term material properties of tissues, such as cohesivity and mechanical excitability, the “physical phenotype”, and propose that changes thereof are driving forces of morphogenesis. Our results indicate that two independent aspects of the physical phenotype of flank mesoderm can be converted to a limb-like state in response to treatment with FGF8. The higher tissue cohesivity induced by this effect will cause the incipient limb bud to phase separate from the surrounding flank, while the active mechanical response of the flank could help ensure that the limb bud bulges out from, rather than becoming engulfed by, this less cohesive tissue.  相似文献   

13.
Pathogenic variants of the gene for smooth muscle α-actin (ACTA2), which encodes smooth muscle (SM) α-actin, predispose to heritable thoracic aortic disease. The ACTA2 variant p.Arg149Cys (R149C) is the most common alteration; however, only 60% of carriers have a dissection or undergo repair of an aneurysm by 70 years of age. A mouse model of ACTA2 p.Arg149Cys was generated using CRISPR/Cas9 technology to determine the etiology of reduced penetrance. Acta2R149C/+ mice had significantly decreased aortic contraction compared with WT mice but did not form aortic aneurysms or dissections when followed to 24 months, even when hypertension was induced. In vitro motility assays found decreased interaction of mutant SM α-actin filaments with SM myosin. Polymerization studies using total internal reflection fluorescence microscopy showed enhanced nucleation of mutant SM α-actin by formin, which correlated with disorganized and reduced SM α-actin filaments in Acta2R149C/+ smooth muscle cells (SMCs). However, the most prominent molecular defect was the increased retention of mutant SM α-actin in the chaperonin-containing t-complex polypeptide folding complex, which was associated with reduced levels of mutant compared with WT SM α-actin in Acta2R149C/+ SMCs. These data indicate that Acta2R149C/+ mice do not develop thoracic aortic disease despite decreased contraction of aortic segments and disrupted SM α-actin filament formation and function in Acta2R149C/+ SMCs. Enhanced binding of mutant SM α-actin to chaperonin-containing t-complex polypeptide decreases the mutant actin versus WT monomer levels in Acta2R149C/+ SMCs, thus minimizing the effect of the mutation on SMC function and potentially preventing aortic disease in the Acta2R149C/+ mice.  相似文献   

14.
Connective tissue growth factor (CTGF) has been reported to play an important role in mediating the profibrotic effects of transforming growth factor-beta (TGF-beta) in various renal diseases. To elucidate the role of CTGF in renal tubular epithelial-myofibroblast transdifferentiation, we examined the expression of alpha-smooth muscle actin (alpha-SMA), vimentin, tenascin-C, and collagen IV expression upon the stimulation of CTGF in cultured human proximal tubular epithelial cell line (HKC), and further investigated the effects of endogenous CTGF blockade on the transdifferentiation process induced by TGF-beta. It is revealed that upon the stimulation of recombinant human CTGF (rhCTGF, 2.5 or 5.0 microg/L), the expression of alpha-SMA and tenascin-C mRNA increased significantly (p<0.01), while collagen IV gene expression decreased significantly (p<0.01), all in a dose-dependent manner. The percentage of alpha-SMA-positive cells was significantly larger in the rhCTGF-stimulated groups than that in negative control (38.9%, 65.5% vs. 2.4%, respectively, p<0.01) as confirmed by flow cytometry. Both cytoplasmic and secretory tenascin-C expression was upregulated by the stimulation of rhCTGF (p<0.01). Under this condition, collagen IV secreted into the culture media was lowered markedly (p<0.01). On RT-PCR analysis, TGF-beta1 upregulated CTGF gene expression, preceding that of alpha-SMA. The alpha-SMA mRNA expression induced by TGF-beta1 was significantly inhibited by CTGF antisense oligodeoxynucleotide (ODN) transfection (p<0.01). With prolonged incubation time, CTGF antisense ODN also inhibited intracellular alpha-SMA protein synthesis, as demonstrated by indirect immuno-fluorescence. So it is concluded that CTGF could promote the transdifferentiation of human renal tubular epithelial cells towards myofibroblasts in vitro, both directly and as a downstream mediator of TGF-beta, and CTGF blockade would be a possible therapeutic target against tubulointerstitial fibrosis.  相似文献   

15.
The development of most, if not all, tubular organs is dependent on signaling between epithelial and stromal progenitor populations. Most often, these lineages derive from different germ layers that are specified during gastrulation, well in advance of organ condensation. Thus, one of the first stages of organogenesis is the integration of distinct progenitor populations into a single embryonic rudiment. In contrast, the stromal and epithelial lineages controlling renal development are both believed to derive from the intermediate mesoderm and to be specified as the kidney develops. In this study we directly analyzed the lineage of renal epithelia and stroma in the developing chick embryo using two independent fate mapping techniques. Results of these experiments confirm the hypothesis that nephron epithelia derive from the intermediate mesoderm. Most importantly, we discovered that large populations of renal stroma originate in the paraxial mesoderm. Collectively, these studies suggest that the signals that subdivide mesoderm into intermediate and paraxial domains may play a role in specifying nephron epithelia and a renal stromal lineage. In addition, these fate mapping data indicate that renal development, like the development of all other tubular organs, is dependent on the integration of progenitors from different embryonic tissues into a single rudiment.  相似文献   

16.
The stromal microenvironment regulates mammary gland branching morphogenesis. We have observed that mast cells are present in the mammary gland throughout its postnatal development and, in particular, are found around the terminal end buds and ductal epithelium of the pubertal gland. Mast cells contribute to allergy, inflammatory diseases, and cancer development but have not been implicated in normal development. Genetic and pharmacological disruption of mast cell function in the mammary gland revealed that mast cells are involved in rapid proliferation and normal duct branching during puberty, and this effect is independent of macrophage recruitment, which also regulates mammary gland development. For mast cells to exert their effects on normal morphogenesis required activation of their serine proteases and degranulation. Our observations reveal a novel role for mast cells during normal pubertal development in the mammary gland.  相似文献   

17.
Lee S  Cho E  Kwon C  Jung S 《Carbohydrate research》2007,342(17):2682-2687
Some microbial carbohydrates have been used as catalysts for the multicomponent Strecker reaction using trimethylsilyl cyanide (TMSCN). Alpha-Cyclosophorohexadecaose (alpha-C16) derived from Xanthomonas species and succinoglycan monomers derived from Rhizobium species acted as catalytic carbohydrates in the mixture solutions of methanol and water. Malonaldehyde bis(phenylimine) as a substrate was completely converted (yield: 100%) into its product to 100% by both alpha-C16 and the succinoglycan monomer (M2), having acetyl, pyruvyl, and succinyl groups as substituents after 1h. The catalytic abilities of the carbohydrates were dependent on the inherent structures of the substrates used in this study, where substrate 1 having a symmetrical structure rather than the others was favorably reacted with the alpha-C16 and M2. Through this study, we suggest that the microbial carbohydrates used in this study could be expected to be environmentally-benign catalysts for the synthesis of alpha-aminonitriles.  相似文献   

18.
The renin-angiotensin system has been shown to contribute to fibrogenesis in varieties of organs, including the liver. Here, we investigated whether the angiotensin II type 1A receptor (AT1A) is implicated in the development of liver fibrosis, using AT1A-deficient and wild-type (WT) mice. After single dose of carbon tetrachloride (CCl(4)), there were no significant differences between two groups with regard to hepatic inflammation and necrosis. After 4 weeks of treatment with CCl(4), histological examination revealed that AT1A-deficient mice showed less infiltration of inflammatory cells and less severe progression of liver fibrosis compared with WT mice. These findings were accompanied by the hepatic content of hydoxyproline and the expression of alpha-smooth muscle actin (alpha SMA). The level of transforming growth factor-beta 1 (TGF-beta 1) messenger RNA was markedly higher in WT mice when compared with AT1A-deficient mice. These results confirm that signaling via AT1A plays a pivotal role in hepatic fibrogenesis.  相似文献   

19.
Fibrosis, tightly associated with wound healing, is a significant symptomatic clinical problem. Inflammatory response was reported to be one of the reasons. MiR-155 is relatively related with the development and requirement of inflammatory cells, so we thought reduce the expression of miR-155 in wound sites could improve the quality of healing through reduce inflammatory response. To test this hypothesis, locally antagonizing miR-155 by directly injecting antagomir to wound edge was used to reduce the expression of miR-155. We found wounds treated with miR-155 antagomir had an obvious defect in immune cells requirements, pro-inflammatory factors IL-1β and TNF-α reduced while anti-inflammatory factor IL-10 increased. With treatment of miR-155 antagomir, the expression of α-smooth muscle actin (α-SMA), Col1 and Col3 at wound sites all reduced both from mRNA levels and protein expressions. Wounds injected with antagomir resulted in the structure improvement of collagen, the collagen fibers were more regularly arranged. Meanwhile the rate of healing did not change significantly. These results provide direct evidences that miR-155 play an important role in the pathogenesis of fibrosis and show that miR-155 antagomir has the potential therapy in prevention and reduction of skin fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号