首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

2.
Mitochondrial DNA (mtDNA) from the cryptomonad Pyrenomonas salina was isolated by CsCl-buoyant density centrifugation of whole-cell DNA in the presence of Hoechst dye 33258. mtDNA consists of circular molecules about 47 kb in size as estimated from restriction enzyme analysis. A physical map for six restriction enzymes (Bam HI, Bge I, Eco RI, Pst I, Sac I and Sac I) has been constructed. Genes coding for the small subunit of rRNA, cytochrome oxidase subunits I and II, and apocytochrome b were localized on this map using Southern blot hybridization with heterologous gene probes from Oenothera. Genes for 5S rRNA and NADH dehydrogenase subunit 5 are absent from P. salina mtDNA. The mitochondrial genome, being the first analysed to this extent in chromophytic algae, should be valuable for taxonomic and phylogenetic studies.  相似文献   

3.
A physical restriction map of the mitochondrial genome from one clone (TCC 854) of the sexually isolated populations (syngens) of the morphologically uniform species Pandorina morum Bory has been constructed using restriction endonucleases Ava I, Bam HI, Bgl II, Eco RI, Kpn I, and Pst I. The 20 kb linear genome can easily be separated from plastid DNA, nuclear satellite rDNA, and main band (nuclear) DNA on a Hoechst/CsCl buoyant density gradient. The Pandorina mitochondrial DNA shows sufficient similarity to the 16 kb mitochondrial genome of Chlamydomonas reinhardtii to cross-hybridize, and also hybridizes with a probe containing maize mitochondrial 18S rRNA genes. Double digests, self-probing, and Bal31 exonuclease experiments suggest that 1.8 to 3.3 kb of sequence is repeated at each end of the genome as an inverted repeat. Mitochondrial genome sizes of other P. morum syngens were found to range from ca. 20 to ca. 38 kb. The mitochondrial genome should be valuable for taxonomic studies; it can be used for comparative organellar studies; and it should be of interest to compare with that of other plant and animal mitochondrial genomes.  相似文献   

4.
A restriction map of the entire Schizosaccharomyces pombe genome was constructed using two restriction enzymes (BamHI and PstI) that recognize 6 bp. The restriction map contains 420 minimally overlapping clones (miniset) and has 22 gaps. We located 126 genes, marker fragments of DNA (NotI and SfiI linking clones), and 36 transposable elements by hybridization to unique restriction fragments. Received: 21 November 1996; in revised form: 3 March 1997 / Accepted: 27 March 1997  相似文献   

5.
Summary We report that the mitochondrial genome of Chlamydomonas moewusii has a 22 kb circular map and thus contrasts with the mitochondrial genome of Chlamydomonas reinhardtii, which is linear and about 6 kb shorter. Overlapping restriction fragments spanning over 90% of the C. moewusii mitochondrial DNA (mtDNA) were identified in a clone bank constructed using a Sau3AI partial digest of a C. moewusii DNA fraction enriched for mtDNA by preparative CsCI density gradient centrifugation. Overlapping Sau3AI clones were identified by a chromosome walk initiated with a clone of C. moewusii mtDNA. The mtDNA map was completed by Southern blot analysis of the C. moewusii mtDNA fraction using isolated mtDNA clones. Regions that hybridized to C. reinhardtii or wheat mitochondrial gene probes for subunit I of cytochrome oxidase (cox1), apocytochrome b (cob), three subunits of NADH dehydrogenase (nadl, nad2 and nad5) and the small and the large ribosomal RNAs (rrnS and rrnL, respectively) were localized on the C. moewusii mtDNA map by Southern blot analysis. The results show that the order of genes in the mitochondrial genome of C. moewusii is completely rearranged relative to that of C. reinhardtii.  相似文献   

6.
A new project to map the genome of the pathogenic fungus,Candida albicans,has been started. The entire genome was cloned as 5088 cosmids, stored in individual microtiter plate wells. DNA was prepared and fingerprinted using restriction digestion, fluorescent labeling, and analysis on an ABI sequencer. These data are being used to construct contigs of the genome. Simultaneously, a DNA pooling system has been set up, suitable for PCR-based isolation of cosmids containing any known gene. Ultimately, these approaches will lead to the creation of a physically based map of theC. albicansgenome, providing the means to localize precisely all the genes, act as a substrate for genome sequencing projects, and provide probes for future studies of genome rearrangement and comparative genomics.  相似文献   

7.
The virus PBCV-1, which replicates in a Chlorella-like green alga, has a dsDNA genome. The DNA was mapped for BamHI, HindIII, and PstI restriction sites. The resulting map has a size of 333 kbp and is circular—indicating either covalently closed circular DNA or circularly permuted linear DNA. Several regions of repetitive DNA were also identified and located on the restriction map.  相似文献   

8.
Summary Cyanelles which have been found in few eukaryotic organisms are photosynthetically active organelles which strikingly resemble cyanobacteria. The complexity of the cyanelle genome in Cyanophora paradoxa (127 Kbp) is too low to consider them as independent organisms in a symbiotic relationship. In order to correlate cyanelle genome and gene structure with those of plastid chromosomes of other plants, a circular map of the cyanelle DNA from Cyanophora paradoxa (strain LB555 UTEX) has been constructed using the restriction endonucleases SalI (generating 6 DNA fragments), BamHI (6), SalI (5), XhoI (9), and BglII (19).Besides the rRNA genes (16S, 23S, 5S), genes for 14 proteins have been located on this circular map. Among those are components of several multienzyme complexes involved in photosynthetic electron transport, as well as the large subunit of ribulose-1,5-bisphosphate carboxylase and two ribosomal proteins. All the probes used, were derived from a collection of spinach chloroplast DNA clones. Hybridization experiments showed signals to DNA fragments primarily from the large single-copy region of cyanelle DNA. The arrangement of genes on cyanelle DNA is different from that on spinach chloroplast DNA. However, genes which have been shown to be cotranscribed in spinach chloroplasts are also clustered on cyanelle DNA.Abbreviations Kbp 103 base pairs - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase holoenzyme  相似文献   

9.
Summary To investigate the evolution of conifer species, we constructed a physical map of the chloroplast DNA of sugi, Cryptomeria japonica, with four restriction endonucleases, PstI, SalI, SacI and XhoI. The chloroplast genome of C. japonica was found to be a circular molecule with a total size of approximately 133 kb. This molecule lacked an inverted repeat. Twenty genes were localized on the physical map of C. japonica cpDNA by Southern hybridization. The chloroplast genome structure of C. japonica showed considerable rearrangements of the standard genome type found in vascular plants and differed markedly from that of tobacco. The difference was explicable by one deletion and five inversions. The chloroplast genome of C. japonica differed too from that of the genus Pinus which also lacks one of the inverted repeats. The results indicate that the conifer group originated monophyletically from an ancient lineage, and diverged independently after loss of an inverted repeat structure.  相似文献   

10.
Summary We have constructed a restriction map for the genome of bacteriophage MX-8 from Myxococcus xanthus using the enzymes PvuII, MboI, and EcoRI. The phage genome size, as determined by restriction analysis, is 51.7±0.6 Kb. Double digestions, redigestions of isolated fragments, and crossed-contact hybridization of partial digestion products show that the restriction map is circular. Restriction analysis and Southern hybridization show that the phage DNA molecules are packaged sequentially from a concatemer starting from a specific site which we have mapped. The DNA molecules have an average terminal redundancy of approximately 8% and are circularly permuted over at least 40% of the genome.  相似文献   

11.
As a first step in the study of chloroplast genome variability in the genus Helianthus, a physical restriction map of sunflower (Helianthus annuus) chloroplast DNA (cpDNA) has been constructed using restriction endonucleases BamH I, Hind III, Pst I, Pvu II and Sac. I. Sunflower circular DNA contains an inverted repeat structure with the two copies (23 kbp each) separated by a large (86 kbp) and a small (20 kbp) single copy region. Its total length is therefore about 152 kbp. Sunflower cpDNA is essentially colinear with that of tobacco with the exception of an inversion of a 23.5-kbp segment in the large single copy region. Gene localization on the sunflower cpDNA and comparison of the gene map with that from tobacco chloroplasts have revealed that the endpoints of the inversion are located between the trnT and trnE genes on the one hand, and between the trnG and trnS genes on the other hand.Analysis of BamH I restriction fragment patterns of H. annuus, H. occidentalis ssp. plantagineus, H. grossesseratus, H. decapetalus, H. giganteus, H. maximiliani and H. tuberosus cpDNAs suggests that structural variations are present in the genus Helianthus.  相似文献   

12.
Summary We have physically mapped the loci conferring resistance to antibiotics that inhibit mitochondrial protein synthesis (erythromycin, chloramphenicol and paromomycin) or respiration (oligomycin I and II), as well as the 21s and 14s rRNA and tRNA genes on the restriction map of the mitochondrial genome of the yeast Saccharomyces cerevisiae. The mitochondrial genes were localized by hybridization of labeled RNA probes to restriction fragments of grande (strain MH41-7B) mitochondrial DNA (mtDNA)1 generated by endonucleases EcoRI, HpaI, BamHI, HindIII, SalI, PstI and HhaI. We have derived the HhaI restriction fragment map of MH41-7B mit DNA, to be added to our previously reported maps for the six other endonucleases.The antibiotic resistance loci (ant R) were mapped by hybridization of 3H-cRNA transcribed from single marker petite mtDNA's of low kinetic complexity to grande restriction fragments. We have chosen the single Sal I site as the origin of the circular physical map and have positioned the antibiotic loci as follows: C (99.5-1.Ou)-P(27-36.Ou)-OII (58.3-62u)-OI (80-84u)-E (94.4-98.4u). The 21s rRNA is localized at 94.4-99.2u, and the 14s rRNA is positioned between 36.2-39.8u. The two rRNA species are separated by 36% of the genome. Total mitochondrial tRNA labeled with 125I hybridized primarily to two regions of the genome, at 99.5-11.5u and 34-44u. A third region of hybridization was occasionally detected at 70-76u, which probably corresponds to seryl and glutamyl tRNA genes, previously located to this region by petite deletion mapping.Supported by USPHS Training Grant T32-GM-07197.Supported by USPHS Training Grant 5-T01-GM-0090-19.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U. S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

13.
Summary A cytochrome bc 1-complex of Rs. rubrum was isolated and the three subunits were purified to homogeneity. The N-terminal amino acid sequence of the purified subunits was determined by automatic Edman degradation. The pet genes of Rhodospirillum rubrum coding for the three subunits of the cytochrome bc 1-complex were isolated from a genomic library of Rs. rubrum using oligonucleotides specific for conserved regions of the subunits from other organisms and a heterologous probe derived from the genes for the complex of Rb. capsulatus. The complete nucleotide sequence of a 5500 by SalI/SphI fragment is described which includes the pet genes and three additional unidentified open reading frames. The N-terminal amino acid sequence of the isolated subunits was used for the identification of the three genes. The genes encoding the subunits are organized as follows: Rieske protein, cytochrome b, cytochrome c 1. Comparison of the N-terminal protein sequences with the protein sequences deduced from the nucleotide sequence showed that only cytochrome c 1 is processed during transport and assembly of the three subunits of the complex. Only the N-terminal methionine of the Rieske protein is cleaved off. The similarity of the deduced amino acid sequence of the three subunits to the corresponding subunits of other organisms is described and implications for structural features of the subunits are discussed.Abbreviations BSA bovine serum albumin - SDS sodium dodecylsulphate - Rs Rhodospirillum - Rb Rhodobacter - Pc Paracoccus - Rps Rhodopseudomonas The nucleotide sequence reported in this paper has been submitted to the GenBank/EMBL Data Bank with accession number X55387  相似文献   

14.
A physical map of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome has been constructed with restriction endonucleases PmeI, SwaI, and an intron-encoded endonuclease I-CeuI. The estimated size of the genome is 2.7 Mb. On the genome 49 genes or operons have been mapped. Two rRNA operons are separated by 600 kb and transcribed oppositely.  相似文献   

15.
A physical and genetic map of the chromosome of Methanobacterium wolfei was constructed by using pulsed-field gel electrophoresis of restriction fragments generated by digestion with NotI and NheI. The chromosome was found to be circular and 1,729 kb in size. Twenty-eight genes were mapped to specific restriction enzyme fragments by performing hybridization experiments with gene probes from various Methanobacterium strains. The genomic map obtained was compared with the updated genomic map of Methanobacterium thermoautotrophicum Marburg. In spite of major restriction pattern dissimilarities, the overall genetic organization seemed to be conserved between the genomes of the two strains. In addition, the two rRNA operons of strain Marburg were precisely mapped on the chromosome, and it was shown that they are transcribed in the same direction.  相似文献   

16.
Summary A detailed map of the 32 kb mitochondrial genome of Aspergillus nidulans has been obtained by locating the cleavage sites for restriction endonucleases Pst I, Bam H I, Hha I, Pvu II, Hpa II and Hae III relative to the previously determined sites for Eco R I, Hind II and Hind III. The genes for the small and large ribosomal subunit RNAs were mapped by gel transfer hybridization of in vitro labelled rRNA to restriction fragments of mitochondrial DNA and its cloned Eco R I fragment E3, and by electron microscopy of RNA/DNA hybrids.The gene for the large rRNA (2.9 kb) is interrupted by a 1.8 kb insert, and the main segment of this gene (2.4 kb) is separated from the small rRNA gene (1.4 kb) by a spacer sequence of 2.8 kb length.This rRNA gene organization is very similar to that of the two-times larger mitochondrial genome of Neurospora crassa, except that in A. nidulans the spacer and intervening sequences are considerably shorter.  相似文献   

17.
Summary Plastids of the brown algaDictyota dichotoma contain a single homogeneous DNA species which bands at a buoyant density of 1.693 g/cm3 in neutral CsCl equilibrium density gradients. The corresponding nuclear DNA has a density of 1.715 g/cm3. The molecular size of the plastid DNA is 123 kbp as calculated by both electron microscopy of spread intact circular molecules and gel electrophoresis following single and double digestions with various restriction enzymes. A restriction map has been constructed using the endonucleases Sal I, Bam HI, and Bgl II which cleave theDictyota plastome into 6, 12, and 17 fragments, respectively. No large repeated regions, as found in chlorophycean andEuglena plastid DNAs, were detected.Dictyota dichotoma is the first member from the chlorophyll c-line of the algal pedigree for which a physical map of plastid DNA has been established. Dedicated to Professor Dr. W. Stubbe on the occasion of his 65th birthday.  相似文献   

18.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

19.
A combined physical and genetic map of Rhizobium leguminosarum biovar trifolii TA1 (RtTA1) genome was constructed and used in comparison of chromosomal organization with the closely related R. leguminosarum bv. viciae 3841 (Rlv) and Rhizobium etli CNF42 (Rhe). This approach allowed evaluation of chromosome and genome plasticity and provided important insights into R. leguminosarum lineage diversity. MssI, SmiI, PacI, and I-CeuI restriction endonucleases were chosen for the analysis, generating fragments with suitable size distributions for RtTA1 genome mapping. The fragments were assembled into a physical map using a combination of complementary methods, including multiple and partial digests of genomic DNA, hybridization with homologous gene probes, and cross-Southern hybridization. About 100 genetic markers were located on the RtTA1 restriction map. Comparison of genetic maps of RtTA1, Rlv, and Rhe revealed extensive chromosomal colinearity despite differences in the physical maps. The comparison provides bases for comprehensive analysis of the evolution of R. leguminosarum genome, indicating that, at least on the chromosomal level, no major rearrangements had occurred after the evolutionary divergence of R. leguminosarum biovars. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Asr1, Asr2 andAsr3 are three homologous clones isolated from tomato whose expression is believed to be regulated by abscisic acid (ABA); the corresponding genes thus participate in physiological and developmental processes such as responses of leaf and root to water stress, and fruit ripening. In this report, results obtained with Near Isogenic Lines reveal thatAsr1, Asr2 andAsr3 represent three different loci. In addition, we map these genes on the restriction fragment length polymorphism (RFLP) map of the tomato genome by using an F2 population derived from an interspecific hybrid crossL. esculentum × L. penelli. RFLP data allow us to map these genes on chromosome 4, suggesting that they belong to a gene family. The elucidation of the genomic organization of theAsr gene family may help in understanding the role of its members in the response to osmotic stress, as well as in fruit ripening, at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号