首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subcellular fractionation studies were performed on human neutrophils stimulated with ionomycin (a Ca(2+)-specific ionophore). The results of these studies revealed NADPH-oxidase activity, without any additive, both in the plasma membrane and in the specific granule fractions. After comparing these results with the NADPH oxidase activity induced by the ionophore in intact neutrophils, in differentiated HL-60 cells and in neutrophil cytoplasts, we conclude that ionomycin preferentially activates the NADPH oxidase pool located in the membrane of specific granules. Furthermore, we suggest that incorporation of granule membrane into the plasma membrane makes the associated NADPH oxidase less sensitive to activation induced by a rise in [Ca(2+)]i.  相似文献   

2.
The stimuli, sn-1, 2-dioctanoylglycerol; (DG8) the calcium specific ionophore, ionomycin, and the chemotactic peptide formylmethionyl-leucyl-phenylalanine (FMLP) can interact with normal human neutrophils and activate their superoxide/hydrogen peroxide generating NADPH-oxidase. In response to the peptide as well as DG8, the neutrophils produced both superoxide (O2-) and hydrogen peroxide (H2O2). Since interaction between the cells and ionomycin was not associated with any notable superoxide production and hydrogen peroxide was induced only in the presence of azide, a potent inhibitor of the hydrogen peroxide-consuming enzymes catalase and myeloperoxidase, we conclude that this stimulus can generate oxygen metabolites intracellularly. Since the DG8-induced production of hydrogen peroxide was increased in the presence of azide, whereas the FMLP-induced response was largely unaffected, we concluded that the three stimuli differ in their capacity to generate oxygen metabolites intracellularly. The use of sn-1,2-didecanoylglycerol (DG10) as stimulating agent did not result in any detectable activation of the NADPH-oxidase. However, preincubation caused an increased (primed) response during stimulation with the chemotactic peptide FMLP. The response of primed neutrophils to FMLP proceeds with a time-course different from that seen in normal cells. From the results presented on FMLP-induced activity in the presence of azide, we conclude that FMLP causes normal cells to produce oxygen radicals which are released from the cells. However, the primed cells are also capable of generating oxygen metabolites that are retained inside the cells. In fact, measurement of the intracellularly generated metabolites discloses this to be the predominant part of the response.  相似文献   

3.
After interaction with so-called priming agents, the respiratory burst in human granulocytes does not become activated, but is enhanced upon subsequent stimulation with the chemoattractant FMLP. Investigating the mechanism of the priming reaction, we found that a transient rise in the cytosolic free calcium concentration [( Ca2+]i) suffices to irreversibly prime human granulocytes. Thus, platelet-activating factor (PAF) induced a transient increase in [Ca2+]i and primed the cells to an enhanced respiratory burst upon subsequent interaction with FMLP. Artificially, the transient rise in [Ca2+]i was mimicked by addition and subsequent removal of the Ca2+ ionophore ionomycin; this treatment too, primed the respiratory burst of the granulocytes. The priming induced by ionomycin was completely abolished when [Ca2+]i changes were buffered during exposure of the cells to the ionophore. The priming induced by PAF was only partially inhibited under [Ca2+]i-buffering conditions during priming, indicating that multiple pathways exist in the priming of granulocytes by PAF.  相似文献   

4.
The time course of superoxide generation and membrane association of protein kinase C was studied in human neutrophils stimulated by PMA, FMLP, ionomycin and A23187. The initiation of superoxide generation in PMA; ionomycin- and A23187-stimulated neutrophils was characterized by a lag period of at least 30 s in contrast to a lag period of 10-15 s in FMLP-stimulated cells. The time course of membrane association of protein kinase C in PMA-stimulated neutrophils was highly dependent upon the PMA concentration used for stimulation. However, membrane association of protein kinase C preceded superoxide generation in cells stimulated by 10-300 ng/ml PMA. FMLP, ionomycin and A23187 induced membrane association of protein kinase C in a few seconds and always before superoxide generation. It is concluded that membrane association of protein kinase C in PMA-, FMLP-, ionomycin- and A23187-stimulated neutrophils precedes superoxide generation, and thereby may be part of the mechanism initiating NADPH-oxidase activity. A simple correlation between the two parameters could not be proven, indicating that also other activation mechanisms are decisive in the activation of NADPH-oxidase.  相似文献   

5.
Membrane and cytosolic factors cooperate to generate NADPH-oxidase. The study of the syndrome of NADPH-oxidase deficiencies, chronic granulomatous disease, has enabled the identification of two membrane factors: a flavin adenine dinucleotide flavoprotein and ab cytochrome. The nature of the cytosolic components is still unknown, but a 47-kD protein, whose phosphorylation occurs in parallel with the generation of a respiratory burst in intact cells, seems to be one of the cytosolic factors. The subcellular localization of the membrane-bound NADPH-oxidase components has been studied in neutrophils: In unstimulated cells, only a minute fraction of the NADPH-oxidase components is localized in the plasma membrane, whereas 80% is localized in the membrane of the specific granules and the majority of the rest is in a newly described membrane-bound compartment, the secretory granules, identified by latent alkaline phosphatase. During stimulation, these NADPH-oxidase components are translocated to the plasma membrane as a result of fusion of granule membrane with plasma membrane. Only the NADPH-oxidase components present in the plasma membrane are incorporated in the respiratory burst oxidase generated in intact cells.  相似文献   

6.
Thyrotropin-releasing hormone (TRH) induces rapid and transient conversion of protein kinase C (Ca2+/phospholipid-dependent enzyme) from a soluble to a particulate-bound form in GH4C1 rat pituitary cells. Ionomycin (200 nM), a calcium ionophore, had no effect by itself on the subcellular distribution of protein kinase C. However, pretreatment of the cells with 200 nM ionomycin inhibited by greater than 50% the ability of TRH to cause translocation of protein kinase C from the cytosol to the particulate cell fraction. Inhibition by ionomycin required that the cells be incubated with the ionophore for at least 10 s before TRH addition. Ionomycin pretreatment did not alter the kinetics of TRH-induced protein kinase C redistribution. Incubation of the cells with 43 mM potassium prior to TRH addition almost completely reversed the inhibition induced by ionomycin. We propose that the mechanism by which ionomycin attenuates TRH action on protein kinase C may involve the capacity of the ionophore to empty the intracellular calcium reservoir which normally releases calcium into the cytosol in response to TRH. Our result provides evidence that the rise in intracellular calcium, which accompanies diacylglycerol formation following TRH action on polyphosphatidylinositide hydrolysis, may be required to achieve maximal conversion of protein kinase C to its presumed active, membrane-bound form in these cells.  相似文献   

7.
Plant respiratory burst oxidase homolog (rboh) proteins, which are homologous to the mammalian 91-kDa glycoprotein subunit of the phagocyte oxidase (gp91(phox)) or NADPH oxidase 2 (NOX2), have been implicated in the production of reactive oxygen species (ROS) both in stress responses and during development. Unlike mammalian gp91(phox)/NOX2 protein, plant rboh proteins have hydrophilic N-terminal regions containing two EF-hand motifs, suggesting that their activation is dependent on Ca(2+). However, the significance of Ca(2+) binding to the EF-hand motifs on ROS production has been unclear. By employing a heterologous expression system, we showed that ROS production by Arabidopsis thaliana rbohD (AtrbohD) was induced by ionomycin, which is a Ca(2+) ionophore that induces Ca(2+) influx into the cell. This activation required a conformational change in the EF-hand region, as a result of Ca(2+) binding to the EF-hand motifs. We also showed that AtrbohD was directly phosphorylated in vivo, and that this was enhanced by the protein phosphatase inhibitor calyculin A (CA). Moreover, CA itself induced ROS production and dramatically enhanced the ionomycin-induced ROS production of AtrbohD. Our results suggest that Ca(2+) binding and phosphorylation synergistically activate the ROS-producing enzyme activity of AtrbohD.  相似文献   

8.
9.
Human neutrophils were primed by exudation or pretreatment with a synthetic diacylglycerol (diC10), the Ca2+ ionophore ionomycin or lipopolysaccharide (LPS). Compared to control cells, these primed cells showed a significantly decreased O2-/H2O2 ratio when stimulated with formylmethionyl-leucyl-phenylalanine (FMLP). This shift indicates a comparative (and net) increased H2O2 detection in the extracellular medium and can not be explained by a dose-dependent impairment in either O2- or H2O2 detecting capacity. An altered H2O2 degenerating capacity was not observed in the primed cells. We propose that priming enhances the capacity to divalently reduce oxygen and thereby directly produce H2O2.  相似文献   

10.
We previously reported on the release of hydrogen peroxide from guinea pig cerebral cortex synaptosomes (13). An important finding was that in glutathione depleted synaptosomes a linear release of hydrogen peroxide is rapidly induced on addition of the Ca++ -ionophore ionomycin (in the presence of Ca++) or upon depolarization of the plasma membrane. We report here that the ionomycin induced hydrogen peroxide is reversed following the addition of bovine serum albumin which strongly binds the ionophore, to be reactivated by further addition of excess ionomycin, or of the depolarizing agent KC1. Similarly, the effect of ionomycin is removed on decreasing the concentration of free Ca++. Bovine serum albumin, which counteracts the effect of ionomycin on the release of H2O2, also counteracts the effect of the ionophore on the movements of Ca++ and the release of gamma-aminobutyrate. These findings support the idea that the synaptosomal production of H2O2 is a carefully controlled important physiological event.  相似文献   

11.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

12.
Evidences have been provided by many laboratories that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) is strictly linked to a transduction pathway that involves the stimulation, via GTP binding protein, of the phosphoinositide turnover and the increase in [Ca2+]i. The results presented in this paper demonstrate that FMLP can activate the NADPH oxidase by triggering a transduction pathway completely independent of phosphoinositide turnover and Ca2+ changes. In fact: i) Ca2+-depleted neutrophils do not respond to FMLP with the activation of phosphoinositide hydrolysis and NADPH oxidase. Both the responses are restored by the addition of exogenous Ca2+. ii) In Ca2+-depleted neutrophils phorbol-myristate-acetate (PMA) activates the NADPH oxidase. iii) The pretreatment of Ca2+-depleted neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase but not of the turnover of phosphoinositides by FMLP. This priming effect of PMA and the role of this phosphoinositide and Ca2+-independent pathway for the stimulation of the NADPH oxidase by receptors mediated stimuli are discussed.  相似文献   

13.
NOX5 is a ROS-generating NADPH oxidase which contains an N-terminal EF-hand region and can be activated by cytosolic Ca(2+) elevations. However the C-terminal region of NOX5 also contains putative phosphorylation sites. In this study we used HEK cells stably expressing NOX5 to analyze the size and subcellular localization of the NOX5 protein, its mechanisms of activation, and the characteristics of the ROS released. We demonstrate that NOX5 can be activated both by the protein kinase C activating phorbol esther PMA and by the Ca(2+) ionophore ionomycin. The PMA- but not the ionomycin-dependent activation can be inhibited by protein kinase C inhibitors. NOX5 activity is inhibited by submicromolar concentrations of diphenyl iodonium (DPI), but not by apocynin. Western blot analysis showed a lower ( approximately 70 kDa) than expected (82 kDa) molecular mass. Two arguments suggest that NOX5 is at least partially expressed on the plasma membrane: (i) the membrane-impermeant superoxide was readily detected by extracellular probes, and (ii) immunofluorescent labeling of NOX5 detected a fraction of the NOX5 protein at the plasma membrane. In summary, we demonstrate that NOX5 can be found intracellularly and at the cell surface. We also describe that it can be activated through protein kinase C, in addition to its Ca(2+) activation.  相似文献   

14.
The effect of the Ca2+ ionophore ionomycin on neoplastic thymocytes in comparison to its effect on normal thymus cells was studied. Ionomycin increases intracellular Ca2+ in normal lymphocytes but fails to increase Ca2+ in neoplastic thymocytes. In these cells the ionophore causes a transient increase in cytosolic free Ca2+. The lack of effect of ionomycin reproduces that of A23187, but it does not depend on reduced availability of intracellular Mg2+ to exchange with Ca2+; it appears to depend on the strong activity of the plasma membrane Ca2+-extruding pump that counteracts ionomycin permeabilization and that can be partly inhibited by the calmodulin inhibitor R24571 (calmidazolium). Neoplastic thymocytes show a high content of magnesium, the intracellular binding of which is efficiently regulated by endogenous ATP. The data show also an interesting correlation between the regulation of energy metabolism (aerobic glycolysis) and cation homeostasis in the neoplastic cells studied.  相似文献   

15.
Antigen-stimulated rat basophilic leukemia (RBL-2H3) cells release serotonin and other inflammatory mediators by a process that requires Ca2+ influx and increased cytoplasmic Ca2+ levels, and is mimicked by Ca2+ ionophores. We report here that the Ca2+ response to antigen and to ionomycin has two components, a Ca2+ spike and a Ca2+ plateau. In nominally Ca2+-free medium, both components of the Ca2+ response are inhibited and secretion does not occur. In Na+-free medium, the initial Ca2+ spike induced by antigen or ionomycin occurs, but the plateau is again absent and secretion is inhibited by 30 to 50%. Secretion is also reduced by 10(-4) M amiloride, an inhibitor of Na+ transport pathways, and by 10(-5) M concentrations of two amiloride analogs with greater activity than amiloride, respectively, against Na+ channels and Na+/Ca2+ exchange. Phorbol esters, which stimulate protein kinase C, enhance the Ca2+ plateau and secretion caused by suboptimal amounts of both antigen and ionomycin; this enhancement depends on extracellular Na+. The Na+ ionophore, monensin, mimics the Ca2+ plateau. From these data, we infer that the Ca2+ spike and plateau reflect separate responses of RBL-2H3 cells to antigen or ionomycin. We propose that the Ca2+ plateau results at least in part from the activation of a Na+-dependent Ca2+ influx pathway. One possible mechanism is that antigen binding stimulates a protein kinase C-regulated Na+ transport system. The resulting influx of Na+ may activate a Na+/Ca2+ antiporter that supports the Ca2+ plateau and mediator release.  相似文献   

16.
Annexin B1 is a novel member of the annexin superfamily which was isolated from a Cysticercus cellulosae cDNA library. To investigate the physiological roles of annexin B1, we firstly performed immunohistochemical analysis on frozen Cysticercus cellulosae sections and found that annexin B1 was present not only in the tegument of the bladder wall, but also in the host-derived inflammatory layer; In addition, ELISA analysis revealed that annexin B1 could be detected in the cystic fluid of Cysticercus cellulosae and the sera of pigs with cysticercosis. These findings indicated that annexin B1 might be a secretary protein. We further constructed a pEGFP-annexin B1 plasmid and transfected it into SiHa cells. We found that GFP-annexin B1 was stimulated to translocate to the plasma membrane by phorbol 12-myristate 13-acetate (PMA). By contrast, it was induced to distribute at the plasma and nuclear membranes by treatment with calcium ionophore ionomycin. PMA increased annexin B1 membrane binding, which might facilitate exocytosis. Moreover, translocation of the protein to the plasma and nuclear membranes after stimulated by ionomycin, was predicted to be related to an additional function.  相似文献   

17.
The relationships between the chemotactic factor-stimulated mobilization of calcium, activation of the NADPH-oxidase, changes in cytosolic pH, and in the level of polymerized actin in human neutrophils have been examined. The approach taken was to use intracellular calcium chelators, and pharmacologic modulators (both positive and negative) of the NADPH-oxidase to measure the aforementioned responses under conditions where the calcium transients were abrogated and/or the generation of superoxide anions was either inhibited or augmented. The decrease in cytosolic pH induced by chemoattractants was inhibited by the calcium chelator BAPTA and by the diglyceride kinase inhibitor 6-[2-(4-[(4-fluorophenyl)phenylmethylene]-1-piperidinylethyl ]-7-methyl-5H-thiazolo[3,2-alpha]pyriimidin-5-one (R59022) (this latter compound enhanced the oxidative response of the cells). Furthermore, a specific inhibitor of the NADPH-oxidase (diphenyleneiodonium) had no significant effect on the cytosolic acidification induced by FMLP or leukotriene B4. These results indicate that the initiation of the cytosolic acidification induced by chemotactic factors is a calcium-dependent event that is not directly linked to the activation of the NADPH-oxidase. In contrast, the stimulated polymerization of actin was insensitive to BAPTA, R59022, and diphenyleneiodonium. Thus, neither the calcium transients nor the oxidative burst play a signaling role in the initiation of actin polymerization elicited by chemoattractants. These data indicate that additional investigations are needed to uncover the biochemical basis of the signals initiated in human neutrophils by chemotactic factors that lead to the polymerization of actin and to the cytosolic acidification.  相似文献   

18.
For superoxide (O2-) responses of human neutrophils stimulated by FMLP, experiments were designed to assess the requirement of extracellular calcium [( Ca2+]o) for priming of O2- responses by platelet-activating factor (PAF), PMA, or ionomycin. Although priming by PMA did not require [Ca2+]o, there was, as expected, a requirement for [Ca2+]o for the optimal priming effects of PAF and ionomycin. The ED50 value for [Ca2+]o in the priming function of PAF was 105 microM. The [Ca2+]o-dependent priming with ionomycin was bimodal with two ED50 values for [Ca2+]o of 90 microM and 3.2 mM. Optimal priming by PAF required at least 4-min exposure of cells to [Ca2+]o. Cells primed by PAF exhibited faster initial rates of O2-production after addition of FMLP, but the duration of O2- production was not prolonged. Whereas PAF-primed responses to FMLP are usually associated with increases in intracellular calcium [( Ca2+]i) after addition of FMLP, two conditions were found in which O2- responses to FMLP in PAF-primed cells occurred in the absence of any detectable increase in [Ca2+]i. When cells were loaded with the calcium chelator, bis-(O-aminophenoxy)-ethane-H,N,N',N'-tetraacetic acid, and then primed with PAF, normal amounts of inositol 1,4,5-trisphosphate were formed, but no increase in [Ca2+]i occurred after addition of FMLP even though the cells exhibited a fully primed O2- response; in Ca2(+)-depleted and ionomycin-permeabilized cells that were primed with PAF and then stimulated with FMLP, O2- was generated in amounts comparable to reference control (primed) cells, but there was suppressed production of inositol 1,4,5-trisphosphate and no increase in [Ca2+]i after addition of FMLP to PAF-primed cells. These data confirm the requirement of [Ca2+]o for optimal priming of neutrophils by PAF and ionomycin (but not cells primed by PMA) and indicate that, under certain conditions, generation of O2- in response to FMLP in PAF-primed neutrophils can occur independent of any increase in [Ca2+]i.  相似文献   

19.
S Meizel  K O Turner 《FEBS letters》1983,161(2):315-318
The influence of extracellular Mg2+ on Ca2+ ionophore (A23187 and ionomycin) induced secretion and changes in the cytosol pH of rabbit neutrophils suspended in Ca2+-free buffer has been investigated. While extracellular Ca2+ is obligatory for ionomycin induced secretion, we have defined conditions under which A23187 can induce secretion in Ca2+-free media. The different behaviour of these two Ca2+ ionophores is discussed on the basis of their different counter cation specificities.  相似文献   

20.
Activation of the O2.- generating oxidase in neutrophils can be achieved with a cell-free oxidase-activating system, which consists of a high speed supernatant (cytosol), a particulate fraction enriched in plasma membrane, GTP-gamma-S, arachidonic acid and Mg ions. Cytosolic proteins from bovine neutrophils were fractionated by chromatography on Mono Q and Mono S columns into two fractions, neither of which was able to activate efficiently the membrane-bound oxidase. However, when combined and added to the cell-free system under optimized conditions, they acted synergistically, activating the oxidase to virtually the same extent as crude cytosol. This synergism demonstrates that more than one cytosolic factor is required for oxidase activation, and can be used to trace the cytosolic factors during the course of their purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号