首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiation dose to cells in vitro from intracellular indium-111   总被引:1,自引:0,他引:1  
Most of the radionuclides used in nuclear medicine emit low energy Auger electrons following radioactive decay. These emissions, if intracellular, could irreparably damage the radiosensitive structures of the cell. The resulting radiation dose, which is a measure of biological damage in the affected cell, could be many times the average radiation dose to the associated organ. In this series of experiments, the radiation dose to the nucleus of a chinese hamster V79 cell was determined for the intracellular radiopharmaceutical 111indium-oxine. Assuming the cell nucleus to be the radiosensitive volume, the radiation dose would be primarily due to the low energy Auger electrons. A much smaller dose would be absorbed from the penetrating X- and gamma-rays and internal conversion electrons released from other radiolabelled cells in the culture. The radiation dose to the cell from the intranuclear decay of 111In was empirically established from cell survival studies to be 3.5 mGy/decay, using cobalt-60 as a reference radiation. The average dose to V79 cells from extracellular 111In (i.e., from 111In located outside the target cell) was calculated to be 5.8 pGy/decay. This suggests that for an intracellular radiopharmaceutical, the radiation dose of consequence would be delivered by the low energy Auger electrons. In contrast, Auger electrons from an extracellular radiopharmaceutical could not directly damage the cell nucleus and therefore would not contribute to the radiation dose.  相似文献   

2.
The DNA damage induced by the 99mTc-radiopharmaceuticals incorporation to the cell was determined by the single-cell gel electrophoresis in murine lymphocytes in vitro. The 99mTc-hexamethyl-propylene amine oxime (99mTc-HMPAO) and 99mTc-2, 5-dihydroxybenzoic acid (99mTc-gentisic acid) induced nearly 100% of cells with breaks and/or alkali labile sites, which is explained by the action of the Auger electrons produced by the decay of the 99mTc. These results agree with the doses of 1.6 and 1.0 Gy estimated by subcellular dosimetry for 99mTc-HMPAO that is incorporated in the cytoplasm, and the 99mTc-gentisic acid, which remains bonded to the cell membrane, respectively. The results imply that Auger electrons are able to cause important DNA damage, when the radionuclide is incorporated in the range of a few microns from the nuclei.  相似文献   

3.
We investigated the DNA damage from Auger electrons emitted from incorporated stable iodine (127I), following photoelectric absorption of external x-rays. The effectiveness of the Auger electrons in producing DNA double-strand breaks (DSB) was determined theoretically, using Monte Carlo simulations of the radiation physics and chemistry, and was shown to be in reasonable agreement with DNA damage measured using the comet assay. The DSB yields were measured in CHO cells for 60Co (as a non-Auger-promoting radiation) and for tungsten-filtered 100 kVp x-rays capable of producing Auger electron emission. The theoretical study showed that on average, 2.5 Auger electrons were emitted for N-shell orbital vacancies and up to 10 Auger electrons were emitted from L1-shell vacancies. These Auger bursts produced approximately 0.03 DSB per N-shell vacancy and 0.3 DSB per K-shell or L-shell vacancy. The calculated yield of DSB from Auger cascades per unit dose (1 Gy) in water was approximately 1.7 for tungsten-filtered 100 kVp x-rays, assuming 20% IUdR substitution of thymidine. The comet assay yielded an experimental value of 3.6±1.6 per 1 Gy for the same conditions. The Monte Carlo simulations also demonstrated a high complexity of DSB produced by Auger cascades with virtually all DSB from inner shell orbitals (i.e. K, L shells) accompanied by compounded strand breakage and base damage, indicating a difficult lesion to repair. This finding agrees well with comet assay results of DNA repair, where an increase in the DSB yield in IUdR-sensitized cells was shown to persist after a time of 24 h. We conclude that Auger cascades in iodine produce a modest increase in the number of initial strand breaks of the order of 10% but the complex nature of these DSB makes them very difficult to repair or potentially prone to misrepair. The accentuated DNA damage may have major consequences for cell survival and may be exploitable in kilovoltage photon activation therapy (PAT) of tumors sensitized with iodine. Received: 23 October 2000 / Accepted: 26 March 2001  相似文献   

4.
Radiotoxicity of an 125I-labeled DNA intercalator in mammalian cells   总被引:1,自引:0,他引:1  
To explore the effect of the Auger electron emitter 125I attached to a DNA intercalator, we have synthesized 125I- and 127I-labeled 3-acetamido-5-iodoproflavine (AIP) and have examined the uptake, intracellular distribution, and radiotoxicity of A125IP in Chinese hamster V79 cells. After incubation with AIP, the nuclei of V79 cells become fluorescent. Uptake of A125IP is directly proportional to its extracellular radioactive concentration and reaches a plateau at about 10 h. Of the cell-associated radioactivity, 60% is retained by the cells after extensive washing. When the survival of V79 cells is plotted as a function of radioactive cell content, the curve has no shoulder with a mean lethal dose (DN) of about 1.3 Gy to the cell nucleus. Because the DN of these cells when irradiated with 250 kVp X rays is 5.8 Gy, the relative biological effectiveness (RBE) of A125IP is about 4.5. The dependence of the RBE values on the localization of the Auger emitter is discussed on the basis of our extended studies on the same cell line.  相似文献   

5.
Intracellular trafficking of Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. In the present study, block copolymer micelles (BCMs) were labeled with the Auger electron emitter indium-111 ((111)In) and loaded with the radiosensitizer methotrexate. HER2 specific antibodies (trastuzumab fab) and nuclear localization signal (NLS; CGYGPKKKRKVGG) peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake and intracellular distribution of the multifunctional BCMs were evaluated in a panel of breast cancer cell lines with different levels of HER2 expression. Indeed cell uptake was found to be HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS peptides to the surface of BCMs was found to result in a significant increase in nuclear uptake of the radionuclide (111)In. Successful nuclear targeting was shown to improve the antipoliferative effect of the Auger electrons as measured by clonogenic assays. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and (111)In in all breast cancer cell lines evaluated.  相似文献   

6.
Efficient mutation induction by 125I and 131I decays in DNA of human cells   总被引:1,自引:0,他引:1  
To examine the role of radiation energy deposition in DNA on cellular effects, we investigated the ability of 125IdUrd and 131IdUrd to kill cells and induce mutations at the hprt locus. We employed human lymphoblastoid cells proficient (TK6) or deficient (SE30) in the ability to incorporate a thymidine analog into DNA by way of the thymidine kinase (TK) scavenger pathway. Iodine-125 releases a shower of low-energy Auger electrons upon decay which deposit most of their energy within 20 nm of the decay site, whereas 131I is a high-energy beta/gamma emitter that is generally considered to emit sparsely ionizing radiation. Although 125IdUrd incorporated into cellular DNA was very effective at producing toxic and mutagenic effects in TK6 cells, virtually no effect was seen in TK-deficient cells incubated with similar levels of 125IdUrd in the extracellular medium. In response to 131IdUrd treatment, 0.45 X 10(-6) mutants were induced per centigray dose deposited within the nucleus in TK-proficient cells, whereas few mutations were induced in TK-deficient cells at doses up to 38 cGy from 131I decays occurring in the medium. The differences in biological response between TK6 and SE30 cells cannot be explained by differential radiosensitivity or IdUrd sensitization of the cell lines involved. We conclude that both 125I and 131I decays occurring while incorporated into DNA are more effective at inducing cell killing and mutations in human cells than either nonincorporated decays or low-LET radiations. These results suggest that localized energy deposition is an important factor in producing biologically important damage by both of these isotopes, and that residual lesions following the decay of DNA-incorporated radioisotopes may contribute to the toxic and mutagenic effects observed in TK-proficient cells. Furthermore, they emphasize that certain beta/gamma-emitting isotopes such as 131I may be particularly hazardous when incorporated into DNA.  相似文献   

7.
The kinetics of uptake, retention, and radiotoxicity of 125IUdR have been studied in proliferating mammalian cells in culture. The radioactivity incorporated into the DNA is directly proportional to the duration of incubation and to the extracellular concentration of 125I. The rate of proliferation of cells is related to the intracellular radioactive concentration and is markedly reduced at medium concentrations greater than or equal to 0.1 mu Ci/ml. At 37% survival the high LET type cell survival curve is characterized by an uptake of 0.035 pCi/cell, and the cumulated mean lethal dose to the cell nucleus is about 80 rad compared to 580 rad of X-ray dose for this cell line. The strong cytocidal effects of the decay of 125I correlate with localized irradiation of the DNA by the low energy Auger electrons.  相似文献   

8.
Summary Decay of radioactive isotopes by K-capture leads to the Auger effect and results in the loss of several orbital electrons and the emission of X-rays. Whereas radiation effects are produced from the emitted electrons, the consequences of the Auger effect are strictly localized to the site of the decaying nuclide.The paper reviews the biological consequences of the decay of125I which produces the Auger effect. Nearly all data were obtained from DNA labeled with125I-5-iodo-2-deoxyuridine (IUdR) in bacteria and mammalian cells. Parameters of effects were cell death, DNA strand breaks, and mutation induction. In order to recognize in a cell the contribution from the Auger effect and that of absorbed radiation, experimental data are analysed in terms of the specific energy for the nuclear volume which contains the isotope.The data indicate that decay of125I is far more toxic than is expected on the basis of absorbed dose to the labeled nucleus. Moreover, it is emphasized that the toxicity of the125I decay is largely determined by events immediately localized to the site of decay.Because the consequences of the Auger effect are strictly localized to the molecular site of the decay,125I and perhaps other nuclides decaying by K-capture promise to be interesting tools in cell biology and molecular biology. First data on the Auger effect as a tool are summarized.It appears that recognizable biological damage is only observed when the Auger effect takes place in vitally important molecules, an example of which is DNA.Dedicated to Prof. Dr. H. Muth on the occasion of his 60th birthday.  相似文献   

9.
In contrast to the biological effects caused by exposure to external beams of radiation, the effects of tissue-incorporated radionuclides are highly dependent on the type of radiation emitted and on their distribution at the macroscopic, microscopic, and subcellular levels, which are in turn determined by the chemical nature of the radionuclides administered. Induction of abnormalities of sperm heads in mice is investigated in this work after the injection of a variety of radiochemicals including alpha emitters. When the initial slopes of the dose-response curves are used to compare the relative biological effectiveness (RBE) of different radiocompounds, the alpha particles emitted in the decay of 210Po are more effective than Auger electrons emitted by 125I incorporated in the DNA of the spermatogonial cells, and both emissions are more effective than X rays. It is also shown that the Auger emitters (125I, 111In) distributed in the cell nucleus are more efficient in producing abnormalities than the same radionuclides localized in the cytoplasm. These findings are consistent with our earlier observations, where spermatogonial cell survival is assayed as a function of the testicular absorbed dose. Further, chronic irradiation of testis with gamma rays from intratesticularly administered 7Be is about three times more effective in causing abnormalities than a single acute exposure to 120-kVp X rays. The resulting RBE values correlate well with our data on sperm head survival with the same radiocompounds. Finally, the radioprotector cysteamine, when administered in small, nontoxic amounts, significantly reduces the incidence of sperm abnormalities from alpha-particle radiation as well as emissions from 125I incorporated into DNA, the dose reduction factors being 10 and 14, respectively.  相似文献   

10.
Since technetium-99m (99mTc) was introduced in medical research it has become one of the most employed radionuclides in nuclear medicine. 99mTc is ideal for routine use on the labeling of different radiopharmaceuticals due to its favorable characteristics. However, some biological effects have been described. These effects may be related to internal conversion electron and/or Auger electron emissions from 99mTc decay that present high linear energy transfer and can generate reactive oxygen species (ROS) in the medium. We evaluated in Escherichia coli K12S and Salmonella typhimurium TA102, both proficient in DNA repair, contribution of those decay emissions on the cytotoxicity induced by 99mTc, both either by generating lesions on DNA or by inducing alterations at membrane. We also studied the genotoxic and/or mutagenic potentiality of 99mTc, in Salmonella typhimurium, using the Ames test. The results showed that: i/ 99mTc is cytotoxic to the Escherichia coli K12S strains; ii/ this effect is related to the electrons (Auger and internal conversion) emissions, and iii/ the 99mTc is not mutagenic and/or genotoxic, when measured by Ames test.  相似文献   

11.
Some recent neutron capture therapy research has focused on using compounds containing the element gadolinium, which produces internal conversion and Auger cascade electrons. The low-energy, short-range Auger electrons are absorbed locally and increase cell killing dramatically as the gadolinium compounds are introduced into the cell nucleus and bind to the DNA. Detailed electron and photon spectra are needed for biophysical modeling and Monte Carlo calculations of damage to DNA. This paper presents calculated electron and photon spectra for three cases: thermal neutron absorption by (157)Gd, the beta-particle decay of (159)Gd, and the K-shell photoelectric event in gadolinium. The Monte Carlo sampling of atomic and nuclear transitions for each of the three cases was used to calculate a large number of representative decays. The sampled decays were used to determine average emissions and energy deposited in small spheres of tissue. The kinetic energy nuclear recoil from gamma-ray and electron emissions was calculated and found to be more than 10 eV for 26% of all (157)Gd neutron capture reactions.  相似文献   

12.
Summary Radiation is known to be carcinogenic to humans but attempts to demonstrate the process using human tissue culture models have met with little success. In the present study explants were established from urothelium and exposed to radiation and a range of chemical carcinogens, suspected promotor or metabolic agents. The resulting outgrowth was monitored for growth rate, proliferating epithelial fraction and development and differentiation of endothelial cells in culture. The results indicate that enhanced growth of epithelial cells can be seen when cultures are irradiated in the presence of various nitrosamines, benzo(a)pyrene or aniline. Radiation alone reduced the overall growth area measured but several proliferative foci developed on the resulting outgrowth. Their ultrastructural appearance reveals that they carry severe mitochondrial damage and exposure of treated cultures to metabolic inhibitors confirms that their respiration is defective. Endothelial cells proliferated over the surface of the epithelial monolayer and both the number and the degree of differentiation of the endothelial cells increased with increasing dose up to 10 Gy. While the cultures are not immortalised by the treatment, it appears that the epithelial cells have an extended lifespan (division capacity) and that a subpopulation has undergone a number of premalignant changes. Changes in endothelial cell proliferation also occur.  相似文献   

13.
BACKGROUND: In a recent study, we showed that cells irradiated with gamma-rays stimulate cell growth of unirradiated (bystander) cells, when the two populations are co-cultured as a mixture. Direct cell-to-cell contact appears to be a prerequisite for the proliferative response of the bystander cells. The aim of the current work is to investigate the possible proliferative bystander effects caused by intracellular irradiation with incorporated radionuclides, specifically the short-range beta particle emitter, tritium ((3)H). METHODS: Subconfluent monolayers of rat liver epithelial cells (WB-F344) were incubated in the presence of (methyl-(3)H)thymidine ((3)HTdR) at concentrations ranging between 5.2 kBq/ml and 57.8 kBq/ml for 18 h. Radiolabeled cells, containing between 0.7 x 10(-3) Bq/cell and 8.8 x 10(-3) Bq/cell were mixed with unlabeled (i.e., bystander) cells in a ratio of 1:1 and cultured together for 24 h followed by an flow cytometry (FCM) study of their proliferation. In order to discriminate the two populations of co-cultured cells, one cell population (unlabeled bystander cells) was stained with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE), which metabolizes intracellularly. The absorbed doses received by the radiolabeled cells that contained 0.7 x 10(-3), 2.5 x 10(-3), and 8.8 x 10(-3) Bq/cell were 0.14, 0.49, and 1.7 Gy, respectively. RESULTS: Cells that were not treated with tritiated thymidine (unlabeled cells), in the presence of radiolabeled cells that received absorbed doses from 0.14-1.7 Gy, showed enhanced cell growth by approximately 9 to 10%. CONCLUSIONS: Cells labeled with (3)HTdR can induce increased proliferation in neighboring unlabeled bystander cells. FCM provides an excellent basis for characterization of proliferative bystander effects in co-culture systems.  相似文献   

14.
Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB). A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope 99mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative 99mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by 99mTc conjugated to intercalators are primarily caused by indirect effects through clustering.  相似文献   

15.
C3H/10T1/2 cells were exposed to 2.45-GHz microwaves for 24 h and/or 1.5 Gy of 238-kVp X rays at 3.75 Gy/min. Transformation frequency and cell survival were measured with or without postirradiation addition of the tumor promoter tetradecanoyl-phorbol-13-acetate (TPA) at 0.1 microgram/ml. We previously reported (Carcinogenesis 6,859-864, 1985) an enhancement of transformation frequency when 10T1/2 cells exposed to a special sequence of microwaves and X rays were subsequently cultured in TPA. The same sequence of microwaves and X rays without promotion resulted in a transformation response similar to that induced by X rays alone. We now report statistically significant (at P greater than 0.999) enhancement of transformation response by TPA in cells exposed to 2.45-GHz microwaves (SAR = 4.4 W/kg). Microwaves alone had no effect on transformation. Plating efficiency and cell survival were not affected by TPA or microwave treatments.  相似文献   

16.
A trifunctional bioconjugate consisting of the SV40 nuclear localization signal (NLS) peptide, an aliphatic triamine ligand, and the DNA intercalating pyrene has been synthesized and quantitatively labeled with [(99m)Tc(OH(2))(3)(CO)(3)](+). The radiotoxicity of the resulting nucleus-targeting radiopharmaceutical on B16F1 mouse melanoma cells has been investigated to evaluate the activity of Auger and Coster-Kronig electrons on the viability of cells. We found a dose-dependent significant radiotoxicity of the nucleus-targeting radiopharmaceutical clearly related to the low energy decay of (99m)Tc. These principal results imply a possible therapeutic strategy based on the use of the low-energy Auger electron-emitting (99m)Tc radionuclide attached to nucleus-targeting molecules and comprising an intercalator. Highly efficient DNA targeting vectors could complement the usual role of (99m)Tc in diagnostic applications. The Auger electrons emitted by the (99m)Tc nuclide induce DNA damage leading ultimately, through a mitotic catastrophe pathway, to necrotic cell death. Non-DNA-targeting (99m)Tc complexes display much lower radiotoxicity.  相似文献   

17.
The Auger electron-emitting isotope 123I is of interest in the context of potential exploitation of Auger electron emitters in radioimmunotherapy. The efficiency of induction of cytotoxic lesions by decay of DNA-associated 125I, the prototype Auger electron emitter, is well established, but its long half-life (60 days) is a limitation. However, the advantage of the much shorter half-life of 123I (13.2 h) might be outweighed by its "weaker" Auger electron cascade with an average of 8-11 Auger electrons, compared to about 15-21 electrons for 125I. Accordingly, the efficiency of DNA breakage for DNA-associated 123I was investigated by incubation of 123I-iodoHoechst 33258 with plasmid DNA. The efficiency of double-strand break induction by decay of 123I was 0.62 compared to 0.82 per decay of 125I in the same experimental system. In the presence of dimethylsulfoxide, the values were 0.54 and 0.65 for decay of 123I and 125I, respectively. The results also showed that at a very low ligand/plasmid molar ratio (<1), the majority of cleavage seemed to occur at a particular site on the plasmid molecule, indicating preferential binding of the 123I-ligand to a unique site or a cluster of neighboring sites.  相似文献   

18.
Diffusional water permeability was measured in renal proximal tubule cell membranes by pulsed nuclear magnetic resonance using proton spin-lattice relaxation times (T1). A suspension of viable proximal tubules was prepared from rabbit renal cortex by Dounce homogenization and differential sieving. T1 measured in a tubule suspension (22% of exchangeable water in the intracellular compartment) containing 20 mM extracellular MnCl2 was biexponential with time constants 1.8 +/- 0.1 ms and 8.3 +/- 0.2 ms (mean +/- SD, n = 8, 37 degrees C, 10 MHz). The slower time constant, representing diffusional exchange of water between intracellular and extracellular compartments, increased to 11.6 +/- 0.6 ms (n = 6) after incubation of tubules with 5 mM parachloromercuribenzene sulfonate (pCMBS) for 60 min at 4 degrees C and was temperature dependent with activation energy Ea = 2.9 +/- 0.4 kcal/mol. To relate T1 data to cell membrane diffusional water permeabilities (Pd), a three-compartment exchange model was developed that included intrinsic decay of proton magnetization in each compartment and apical and basolateral membrane water transport. The model predicted that the slow T1 was relatively insensitive to apical membrane Pd because of low luminal/cell volume ratio. Based on this analysis, basolateral Pd (corrected for basolateral membrane surface convolutions) is 2.0 X 10(-3) cm/s, much lower than corresponding values for basolateral Pf (10-30 X 10(-3) cm/s) measured in the intact tubule and in isolated basolateral membrane vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of bremsstrahlung, electron, gamma, and neutron radiations were investigated on the motor performance of male Sprague-Dawley rats. Rats were irradiated at a midline tissue dose rate of 20 Gy/min +/- 1 with one of the following: 18.6-MeV electrons (N = 40) or 18.1-MVp bremsstrahlung (N = 57) from a linear accelerator, 60Co 1.25-MeV gamma-ray photons (N = 48), or reactor neutrons at 1.67 MeV tissue-kerma weighted-mean energy (N = 43). Radiation effects were determined by establishing median effective doses (ED50) for rats trained on an accelerod, a shock-avoidance motor performance test. ED50's were based on 10-min postexposure performance. The ED50's were 61 Gy for electrons, 81 Gy for bremsstrahlung, 89 Gy for gamma-ray photons, and 98 Gy for neutrons. In terms of relative biological effectiveness to produce early performance decrement (10 min from the start of irradiation), significant differences existed between the electrons and the other three fields and between the bremsstrahlung and neutron fields. These differences could not be explained by macroscopic dose distribution patterns in the irradiated animals. The data imply that different radiation qualities are not equally effective at disrupting performance, with high-energy electrons being the most effective and neutrons the least.  相似文献   

20.
A current discussion on mammography screening is focused on claims of high relative biological effectiveness (RBE) of mammography X rays compared to conventional 200 kV X rays. An earlier assessment in terms of the electron spectra of these radiations has led to the conclusion that the RBE is bound to be less than 2, regardless of specific model assumptions and the microdosimetric properties of electrons. The present study extends this result in terms of the microdosimetric proximity function, t(x), for electrons, which is essentially the spatial auto-correlation function of energy within particle tracks. If pairs of DNA lesions, e.g. chromosome breaks or deletions, bring about the observed damage, the value t(x) determines for a specified radiation the relative frequency of pairs of lesions a distance x apart. The effectiveness of the radiation is thus proportional to an average of the values of t(x) over the distances, x, for which lesions can combine. The analysis suggests that 15 keV electrons can have a low-dose relative biological effectiveness (RBE(M)) of 1.6 relative to 40 keV electrons if the interaction distances do not exceed about 1 micro m. An extension of the concept, the reduced proximity function, t(delta)(x), permits the inclusion of models with an energy threshold, such as delta = 100 eV, 500 eV or 2 keV, for the formation of each of the DNA lesions. This makes it possible to assess the potential impact of the Auger electrons which accompany most photoelectrons, but only a minority of the Compton electrons. It is found that the Auger electrons could make photoelectrons substantially more effective than Compton electrons at energies below 10 keV but not at energies above 15 keV. The conclusions obtained for the RBE of 15 keV electrons relative to 40 keV electrons will be roughly representative of the RBE of mammography X rays relative to conventional 200 kV X rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号