首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this work we tested viability, proliferation, and vulnerability of neural cells, after continuous radiofrequency (RF) electromagnetic fields exposure (global system for mobile telecommunications (GSM) modulated 900 MHz signal at a specific absorption rate (SAR) of 1 W/kg and maximum duration 144 h) generated by transverse electromagnetic cells. We used two cellular systems, SN56 cholinergic for example, SN56 cholinergic cell line and rat primary cortical neurons, and well‐known neurotoxic challenges, such as glutamate, 25‐35AA beta‐amyloid, and hydrogen peroxide. Exposure to RF did not change viability/proliferation rate of the SN56 cholinergic cells or viability of cortical neurons. Co‐exposure to RF exacerbated neurotoxic effect of hydrogen peroxide in SN56, but not in primary cortical neurons, whereas no cooperative effects of RF with glutamate and 25‐35AA beta‐amyloid were found. These data suggest that only under particular circumstances exposure to GSM modulated, 900 MHz signal act as a co‐stressor for oxidative damage of neural cells. Bioelectromagnetics 30:564–572, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Isothermal (37 +/- 0.2 degrees C) exposure of glioma cells (LN71) for 2 h to 27 or 2450 MHz continuous-wave radiofrequency (RF) radiation in vitro modulated the rates of DNA and RNA synthesis 1, 3, and 5 days after exposure. The alterations indicate effects on cell proliferation and were not caused by RF-induced cell heating. The dose response for either frequency of the radiation was biphasic. Exposure to specific absorption rates (SARs) of 50 W/kg or less stimulated incorporation rates of tritiated thymidine (3H-TdR) and tritiated uridine (3H-UdR), whereas higher SARs suppressed DNA and RNA synthesis. Statistically significant time-dependent alterations were detected for up to 5 days postexposure, suggesting a kinetic cellular response to RF radiation and the possibility of cumulative effects on cell proliferation. General mechanisms of effects are discussed.  相似文献   

3.
Palumbo, R., Brescia, F., Capasso, D., Sannino, A., Sarti, M., Capri, M., Grassilli, E. and Scarfì, M. R. Exposure to 900 MHz Radiofrequency Radiation Induces Caspase 3 Activation in Proliferating Human Lymphocytes. Radiat. Res. 170, 327- 334 (2008).In this study, the induction of apoptosis after exposure to 900 MHz radiofrequency radiation (GSM signal) was investigated by assessing caspase 3 activation in exponentially growing Jurkat cells and in quiescent and proliferating human peripheral blood lymphocytes (PBLs). The exposure was carried out at an average specific absorption rate of 1.35 W/kg in a dual wire patch cell exposure system where the temperature of cell cultures was accurately controlled. After 1 h exposure to the radiofrequency field, a slight but statistically significant increase in caspase 3 activity, measured 6 h after exposure, was observed in Jurkat cells (32.4%) and in proliferating human PBLs (22%). In contrast, no effect was detected in quiescent human PBLs. In the same experimental conditions, apoptosis was also evaluated in Jurkat cells by Western blot analysis and in both cell types by flow cytometry. To evaluate late effects due to caspase 3 activity, flow cytometry was also employed to assess apoptosis and viability 24 h after radiofrequency-radiation exposure in both cell types. Neither the former nor the latter was affected. Since in recent years it has been reported that caspases are also involved in processes other than apoptosis, additional cell cycle studies were carried out on proliferating T cells exposed to radiofrequency radiation; however, we found no differences between sham-exposed and exposed cultures. Further studies are warranted to investigate the biological significance of our findings of a dose-response increase in caspase 3 activity after exposure to radiofrequency radiation.  相似文献   

4.
Human peripheral blood leukocytes from healthy volunteers have been employed to investigate the induction of genotoxic effects following 2 h exposure to 900 MHz radiofrequency radiation. The GSM signal has been studied at specific absorption rates (SAR) of 0.3 and 1 W/kg. The exposures were carried out in a waveguide system under strictly controlled conditions of both dosimetry and temperature. The same temperature conditions (37.0 +/- 0.1 degrees C) were realized in a second waveguide, employed to perform sham exposures. The induction of DNA damage was evaluated in leukocytes by applying the alkaline single cell gel electrophoresis (SCGE)/comet assay, while structural chromosome aberrations and sister chromatid exchanges were evaluated in lymphocytes stimulated with phytohemagglutinin. Alterations in kinetics of cell proliferation were determined by calculating the mitotic index. Positive controls were also provided by using methyl methanesulfonate (MMS) for comet assay and mitomycin-C (MMC), for chromosome aberration, or sister chromatid exchange tests. No statistically significant differences were detected in exposed samples in comparison with sham exposed ones for all the parameters investigated. On the contrary, the positive controls gave a statistically significant increase in DNA damage in all cases, as expected. Thus the results obtained in our experimental conditions do not support the hypothesis that 900 MHz radiofrequency field exposure induces DNA damage in human peripheral blood leukocytes in this range of SAR.  相似文献   

5.
In recent years, possible health hazards due to radiofrequency radiation (RFR) emitted by mobile phones have been investigated. Because several publications have suggested that RFR is stressful, we explored the potential biological effects of Global System for Mobile phone communication at 900 MHz (GSM-900) exposure on cultures of isolated human skin cells and human reconstructed epidermis (hRE) using human keratinocytes. As cell stress markers, we studied Hsc70, Hsp27 and Hsp70 heat shock protein (HSP) expression and epidermis thickness, as well as cell proliferation and apoptosis. Cells were exposed to GSM-900 under optimal culture conditions, for 48 h, using a specific absorption rate (SAR) of 2 W x kg(-1). This SAR level represents the recommended limit for local exposure to a mobile phone. The various biological parameters were analysed immediately after exposure. Apoptosis was not induced in isolated cells and there was no alteration in hRE thickness or proliferation. No change in HSP expression was observed in isolated keratinocytes. By contrast, a slight but significant increase in Hsp70 expression was observed in hREs after 3 and 5 weeks of culture. Moreover, fibroblasts showed a significant decrease in Hsc70, depending on the culture conditions. These results suggest that adaptive cell behaviour in response to RFR exposure, depending on the cell type and culture conditions, is unlikely to have deleterious effects at the skin level.  相似文献   

6.
It is important to determine the possible effects of exposure to radiofrequency (RF) radiation on the genetic material of cells since damage to the DNA of somatic cells may be linked to cancer development or cell death and damage to germ cells may lead to genetic damage in next and subsequent generations. The objective of this study was to investigate whether exposure to radiofrequency radiation similar to that emitted by mobile phones of second-generation standard Global System for Mobile Communication (GSM) induces genotoxic effects in cultured human cells. The cytogenetic effects of GSM-900 MHz (GSM-900) RF radiation were investigated using R-banded karyotyping after in vitro exposure of human cells (amniotic cells) for 24 h. The average specific absorption rate (SAR) was 0.25 W/kg. The exposures were carried out in wire-patch cells (WPCs) under strictly controlled conditions of temperature. The genotoxic effect was assessed immediately or 24 h after exposure using four different samples. One hundred metaphase cells were analyzed per assay. Positive controls were provided by using bleomycin. We found no direct cytogenetic effects of GSM-900 either 0 h or 24 h after exposure. To the best of our knowledge, our work is the first to study genotoxicity using complete R-banded karyotyping, which allows visualizing all the chromosomal rearrangements, either numerical or structural.  相似文献   

7.
The aim of this study was to investigate the nonthermal effects of radiofrequency (RF) fields on human immune cells exposed to a Global System for Mobile Communication (GSM) signal generated by a commercial cellular phone and by a sinusoidal non-modulated signal. To assess whether mobile phone RF-field exposure affects human immune cell functions, peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed in vitro to a 900 MHz GSM or continuous-wave (CW) RF field 1 h/day for 3 days in a transverse electromagnetic mode (TEM) cell system (70-76 mW/kg average specific absorption rate, SAR). The cells were cultured for 48 or 72 h, and the following end points were studied: (1) mitogen-induced proliferation; (2) cell cycle progression; (3) spontaneous and 2-deoxy-D-ribose (dRib)-induced apoptosis; (4) mitochondrial membrane potential modifications during spontaneous and dRib-induced-apoptosis. Data obtained from cells exposed to a GSM-modulated RF field showed a slight decrease in cell proliferation when PBMCs were stimulated with the lowest mitogen concentration and a slight increase in the number of cells with altered distribution of phosphatidylserine across the membrane. On the other hand, cell cycle phases, mitochondrial membrane potential and susceptibility to apoptosis were found to be unaffected by the RF field. When cells were exposed to a CW RF field, no significant modifications were observed in comparison with sham-exposed cells for all the end points investigated.  相似文献   

8.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

9.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

10.
目的:间充质干细胞(Mesenchymal stem cells,MSCs)具有广阔的临床应用前景,但由于其体外增殖和定向分化等问题,制约了其进一步应用。本研究拟探讨1950MHz射频电磁场(Radio-frequency electromagnetic fields,RF-EMF)对人脐带间充质干细胞(Human umbilical cord mesenchymal stem cells,hUC-MSCs)增殖和成骨方向分化的影响,以期为MSCs的体外增殖和定向分化提供一条新途径。方法:华通氏胶组织块法分离培养人脐带间充质干细胞,流式细胞仪检测间充质干细胞特异性标志物。选择鉴定后的第3至第6代(P3-P6)hUC-MSCs用于实验。将hUC-MSCs细胞暴露或假暴露于频率为1950 MHz,比吸收率(Specific absorption rate,SAR)分别为0.5,1.0和2.0 W/kg的RF-EMF中,每天暴露1 h(5 min开,10 min关),连续暴露7 d。暴露结束后,流式细胞仪检测细胞周期,免疫荧光检测增殖相关蛋白Ki67表达,连续6天用CCK-8方法检测细胞数。在成骨分化研究中,将P3代的hUC-MSCs随机分为假暴露(sham)组,射频辐射暴露(RF)组,成骨诱导培养基组(Induction medium,OM)和成骨诱导培养基联合射频辐射暴露(OM+RF)组,暴露SAR值为2.0 W/kg,其它参数不变。暴露结束后立即检测细胞的碱性磷酸酶(Alkaline phosphatase,ALP)活性。结果:原代培养的细胞具有MSC典型外观,且表达MSCs特异性表面抗原。与sham组相比,不同SAR值RF暴露后,hUC-MSCs的增殖能力无明显变化,S期细胞比例及Ki67蛋白水平也无显著改变。此外,hUC-MSCs经SAR值为2.0W/kg的RF暴露7 d,与sham组相比其ALP活性无显著变化。与OM组相比,OM+RF组的ALP活性亦无显著改变。结论:华通氏胶组织块法能够培养出纯度较高的间充质干细胞,本实验条件下的1950 MHz射频电磁场对hUC-MSCs的增殖和成骨分化均无显著影响。  相似文献   

11.
The possible harmful effects of radiofrequency electromagnetic fields (RF EMFs) are controversial. We have used human Mono Mac 6 cells to investigate the influence of RF EMFs in vitro on cell cycle alterations and BrdU uptake, as well as the induction of apoptosis and necrosis in human Mono Mac 6 cells, using flow cytometry after exposure to a 1,800 MHz, 2 W/kg specific absorption rate (SAR), GSM-DTX signal for 12 h. No statistically significant differences in the induction of apoptosis or necrosis, cell cycle kinetics, or BrdU uptake were detected after RF EMF exposure compared to sham or incubator controls. However, in the positive control cells treated with gliotoxin and PMA (phorbol 12 myristate-13 acetate), a significant increase in apoptotic and necrotic cells was seen. Cell cycle analysis or BrdU incorporation for 72 h showed no differences between RF EMF- or sham-exposed cells, whereas PMA treatment induced a significant accumulation of cells in G(0)/G(1)-phase and a reduction in S-phase cells. RF EMF radiation did not induce cell cycle alterations or changes in BrdU incorporation or induce apoptosis and necrosis in Mono Mac 6 cells under the exposure conditions used.  相似文献   

12.
13.
The aim of the present study was to assess whether exposure to a sinusoidal extremely low frequency magnetic field (ELF‐MF; 50 Hz, 1 mT) can affect proliferation and differentiation in the human neuroblastoma cell line BE(2)C, which is representative of high risk neuroblastomas. Cells were subjected to ELF‐MF exposure in the presence or absence of a neuronal differentiating agent (all‐trans‐retinoic acid, ATRA) for 24–72 h. In each experiment, ELF‐MF‐exposed samples were compared to sham‐exposed samples. Cells exposed to ELF‐MF combined with retinoic treatment showed a decreased cellular proliferation and an increased proportion of G0/G1 phase cells compared to cells exposed to either treatment alone. Moreover, ELF‐MF‐ and ATRA‐treated cells showed more differentiated morphological traits (a higher neurite number/cell, an increased neurite length), together with a significant increase of mRNA levels of p21WAF1/CIP1 and cdk5 genes, both involved in neuronal differentiation. In addition, the expression of cyp19 gene, which is involved both in neuronal differentiation and stress response, was evaluated; cyp19 gene expression was enhanced by ATRA treatment and significantly enhanced further by ELF‐MF exposure combined with ATRA. In conclusion, our data suggest that ELF‐MF exposure can strengthen ATRA effects on neuroblastoma cells. Bioelectromagnetics 31:425–433, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
AIM: To investigate putative biological damage caused by GSM mobile phone frequencies by assessing electromagnetic fields during mobile phone working. METHODS: Neuron-like cells, obtained by retinoicacid-induced differentiation of human neuroblastoma SH-SY5Y cells, were exposed for 2 h and 4 h to microwaves at 1800 MHz frequency bands. RESULTS: Cell stress response was evaluated by MTT assay as well as changes in the heat shock protein expression (Hsp20, Hsp27 and Hsp70) and caspase-3 activity levels, as biomarkers of apoptotic pathway. Under our experimental conditions, neither cell viability nor Hsp27 expression nor caspase-3 activity was significantly changed. Interestingly, a significant decrease in Hsp20 expression was observed at both times of exposure, whereas Hsp70 levels were significantly increased only after 4 h exposure. CONCLUSION: The modulation of the expression of Hsps in neuronal cells can be an early response to radiofrequency microwaves.  相似文献   

15.
Experiments were carried out to assess whether a magnetic field of 50 Hz and 1 mT can influence apoptosis and proliferation in the human neuroblastoma cell line LAN-5. TUNEL assays and poly-ADP ribose polymerase (PARP) expression analysis were performed to test apoptosis induction, and the WST-1 assay was used to calculate the proliferation index in a long term exposure. No alterations were found in cellular ability to undergo programmed cell death, but a small increase in the proliferation index was evidenced after 7 days of continuous exposure. Also, a slight and transient increase of B-myb oncogene expression was detected after 5 days of exposure. Combined exposures of cells to EMF and to chemical agents which interfere with proliferation, such as the differentiative agent retinoic acid and the apoptotic inducer camptothecin, showed an antagonistic effect of magnetic fields against the differentiation of the LAN-5 cells and a protective effect towards apoptosis.  相似文献   

16.
Many environmental signals, including ionizing radiation and UV rays, induce activation of Egr-1 gene, thus affecting cell growth and apoptosis. The paucity and the controversial knowledge about the effect of electromagnetic fields (EMF) exposure of nerve cells prompted us to investigate the bioeffects of radiofrequency (RF) radiation on SH-SY5Y neuroblastoma cells. The effect of a modulated RF field of 900 MHz, generated by a wire patch cell (WPC) antenna exposure system on Egr-1 gene expression, was studied as a function of time. Short-term exposures induced a transient increase in Egr-1 mRNA level paralleled with activation of the MAPK subtypes ERK1/2 and SAPK/JNK. The effects of RF radiations on cell growth rate and apoptosis were also studied. Exposure to RF radiation had an anti-proliferative activity in SH-SY5Y cells with a significant effect observed at 24 h. RF radiation impaired cell cycle progression, reaching a significant G2-M arrest. In addition, the appearance of the sub-G1 peak, a hallmark of apoptosis, was highlighted after a 24-h exposure, together with a significant decrease in mRNA levels of Bcl-2 and survivin genes, both interfering with signaling between G2-M arrest and apoptosis. Our results provide evidence that exposure to a 900 MHz-modulated RF radiation affect both Egr-1 gene expression and cell regulatory functions, involving apoptosis inhibitors like Bcl-2 and survivin, thus providing important insights into a potentially broad mechanism for controlling in vitro cell viability.  相似文献   

17.
In this study, the effect of exposure to 900 and 1800 MHz GSM-like radiofrequency radiation upon the urinary 6-sulfatoxymelatonin (6SM) excretion of adult male Wistar rats was studied. Seventy-two rats were used in six independent experiments, three of which were done with 900 MHz and the other three with 1800 MHz. The exposures were performed in a gigahertz transverse electromagnetic mode (GTEM) cell. The power densities of radiation were 100 and 20 microW/cm(2) at 900 and 1800 MHz frequency, respectively. The carrier frequency was modulated with 218 Hz, as in the GSM signal. The animals were exposed for 2 h between 8:00 AM and noon daily during the 14 day exposure period. The urine of rats was collected from 12:00 AM to 8:00 AM, collecting from exposed and control animal groups on alternate days. The urinary 6SM concentration was measured by (125)I radioimmunoassay and was referred to creatinine. The combined results of three experiments done with the same frequency were statistically analyzed. Statistically significant changes in the 6SM excretion of exposed rats (n = 18) compared to control group (n = 18) were not found either at 900 or 1800 MHz.  相似文献   

18.
This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.  相似文献   

19.
Cellular effects of electromagnetic fields   总被引:3,自引:0,他引:3  
Studies at the cellular level are needed to reveal the cellular and molecular biological mechanisms underlying the biological effects and possible health implications of non-ionising radiation, such as extremely low frequency (ELF) magnetic fields (MFs) and radiofrequency (RF) fields. Our research group has studied the effects of 50 Hz ELF MFs (caused by power lines and electric devices) and 872 MHz or 900 MHz RFs (emitted by mobile phones and their base stations) on cellular ornithine decarboxylase activity, cell cycle kinetics, cell proliferation, and necrotic or apoptotic cell death. For RFs, pulse-modulated (217 Hz modulation frequency corresponding a global system for mobile communication-type signal) or continuous wave (unmodulated) signals were used. To expose the cell cultures to MFs or RFs, specially developed exposure systems were used, where levels of electromagnetic field exposure and the conditions of cell culture could be precisely controlled. A coexposure approach was used in many studies, i.e. the cell cultures were exposed to other stressors in addition to MFs or RFs. Ultraviolet radiation, serum deprivation, or fresh medium addition, were used as co-exposures. The results presented in this short review show that the effects of mere MFs or RF on cell culture models are quite minor, but that various co-exposure approaches warrant additional study.  相似文献   

20.
To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN(R) (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37 degrees C +/- 0.3 degrees C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号