首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the influences of aging and reduced ovarian follicular reserve on estrous cyclicity, estradiol (E(2)) production, and gonadotropin secretion. Young virgin and middle-aged (MA) retired breeder female rats were unilaterally ovariectomized (ULO) or sham operated (control). Unilateral ovariectomy of young rats reduced the ovarian follicular reserve by one-half, to a level similar to that found in MA controls. Unilateral ovariectomy of MA females reduced the follicular pool further, to one half of MA controls. The incidence of regular cyclicity was significantly lower in MA ULO females than in young controls, with intermediate cycle frequency in young ULO and MA controls. Among cyclic rats, the magnitude of the proestrous LH surge was highest in young controls, intermediate in young ULO rats and MA controls, and lowest in MA ULO females. Similarly, ovulation rates were highest in young controls, intermediate in young ULO rats and MA controls, and lowest in MA ULO females. While young ULO rats exhibited augmented secondary FSH surges on estrous morning, middle-aged ULO females displayed secondary FSH levels comparable to young controls. The effects of age and reduced follicle number on estrous cyclicity and gonadotropin secretion were not due to altered E(2) secretion, as preovulatory E(2) levels were similar among all groups. Thus, experimental reduction in the follicular reserve exerts acute effects on the preovulatory LH surge, ovulation rate, and estrous cyclicity in both young and MA rats. However, decreased follicle number increases FSH levels only in young rats, indicating aging-related alterations in the feedback regulation of FSH.  相似文献   

2.
To examine the effects of prepubertal steroid environment on subsequent estrous cyclicity and gonadotropin secretion, Silastic implants containing 25, 50 or 100% 17 beta-estradiol (E2;n=34), 50% diethylstilbestrol (DES; n=16) or 50% testosterone (T; n=17) were placed into female rats at 12 days of age and removed on the day of vaginal opening (18-24 days of age). At 80 days of age, the percentages of regularly cycling females in the E2-(three groups combined), DES- and T-implanted groups were 59%, 0% and 59%, respectively. By 110 days of age, the percentages were reduced to 24%, 0% and 0%, and at 140 days of age 6%, 0% and 0%, respectively. Many of these females displayed irregular estrous cycles followed by a persistent estrous (PE) state. By contrast, 89% of the control females (blank implants or no implant) maintained regular cycles up to 140 days of age. At 150 days of age, an i.p. injection of gonadotropin-releasing hormone (GnRH; 100 ng/100 g BW) markedly increased serum luteinizing hormone (LH), but not follicle-stimulating hormone (FSH), in intact PE females treated prepubertally with E2 implants. After the test with GnRH, PE rats were ovariectomized (OVX). Thirty days after OVX, similar GnRH administration significantly increased serum levels of both LH and FSH, but these responses were significantly (P less than 0.01) reduced when compared with those in OVX controls. Progesterone administration to estradiol benzoate-primed, acutely (3 days) OVX, or long-term (43 days) OVX-PE females did not increase LH or FSH release. These results indicate that exposure to exogenous estrogen or T prior to puberty precipitates the decline in estrous cyclicity associated with the loss of gonadotropin surge response, presumably due to an alteration in hypothalamic GnRH release.  相似文献   

3.
We have recently reported that successive treatments of young virgin rats with progesterone (P) implants produce elevated circulating P and consistently low estradiol (E2) concentrations, and subsequently delay the aging-associated reproductive decline. Inasmuch as E2 has been implicated in causing the loss of regular estrous cyclicity in aging rats, the present study examined if the concomitant presence of moderately increased circulating E2 levels could counteract the effects of P implants on reproductive aging. Starting at 3 1/2 mo and continuing to 8 mo of age, regularly cyclic, virgin rats received either s.c. Silastic implants of P (P-implanted), blank Silastic implants (virgin controls), or P + E2 implants (P + E2-implanted) for 3 wk, followed by implant removal for 1 wk. Each of these implant treatments was repeated in the same female rats 5 times. Blood samples were obtained on different days of the estrous cycle from the control group and on Day 11 of successive treatments with P or P + E2 implants for measurements of serum P and E2 values. At 8 1/2 and 10 mo of age, estrous cyclicity of these same virgin rats was again monitored, and 10-mo-old regularly cyclic females from each treatment group were mated with young fertile males to complete term pregnancies. While virgin controls showed cyclic increases in E2 and P secretion during the estrous cycle, P-implanted virgins exhibited consistently low serum E2 and moderately increased P levels during 5 successive treatments. The latter indicates a potent inhibition of ovarian E2 secretion by P implants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Middle-aged female rats display luteinizing hormone (LH) surge deficits and cycle irregularity followed by the onset of persistent estrus (PE). The central nervous system has been identified as a primary locus of failure in PE rats, but the particular neural elements involved have not been determined. The goal of the present study was to identify a role for endogenous opioid peptides (EOP) in age-related acyclicity by evaluating the effect of opiate antagonist treatment on vaginal cytology in PE rats. PE rats were administered, s.c., saline (SAL), naloxone (NAL) or naltrexone (NTX) once daily for 20 days, or repetitively on Day 1 and on successive proestrus days if cyclicity was resumed. Single NTX (50 mg/kg), but not NAL (2 mg/kg), treatment interrupted the PE state in almost half of treated animals. Daily or repetitive proestrus NTX (10 mg/kg) treatment interrupted PE more frequently, and many animals displayed repeated estrous cycles and ovulation. Afternoon LH surges were observed after initial NTX treatment in animals displaying PE interruption. This demonstration that LH surges and ovulatory cycles can be reinitiated in PE rats with NTX suggests that dysfunction in the 'brake' on EOP secretion during proestrus may be one of the neuroendocrine impairments mediating acyclicity in aging female rats.  相似文献   

5.
In multiparous rats, the incidence of regular estrous cyclicity and fertility decreases markedly at middle age. However, recent studies have shown that repeated pregnancies or progesterone (P) implants can subsequently cause retired breeder females to maintain regular cyclicity for an extended period of time; these results suggest a P-mediated deceleration of reproductive aging. In the present study, we examined the relation of ovarian steroid levels in young virgin females to their subsequent estrous cyclicity and reproductive function during aging as compared to multiparous females. Beginning at 4 mo of age and continuing to 6 mo of age, regularly cyclic virgin rats received either consecutive P implants (n = 41) or no implants (controls, n = 45) for 3 wk, followed by implant removal for 1 wk. Additional females (n = 72) were mated and allowed to undergo repeated pregnancies at 4, 6 1/2, and 8 mo of age. Blood samples were obtained throughout the estrous cycle (virgin females), during pregnancy (multiparous rats), and on Day 11 of successive treatments with P implants (virgins with P implants) for P, estradiol (E2), and testosterone (T) measurements. Subsequently, regularly cyclic females from all three groups were mated with fertile males to undergo term pregnancies at 10 and 12 mo of age. While the virgin controls showed cyclic increases in P, T, and E2 secretion during their estrous cycles, the P-implanted females had persistently low E2 and high P and T levels during treatment, which indicates an inhibition of ovarian E2 synthesis by P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Reproductive aging in the female rat is associated with gradual declines in LH secretion and ovarian progesterone (P) production. This study examined whether the influences of aging on P levels reflect decreased ovarian responsiveness to gonadotropin stimulation, as opposed to changes in gonadotropin release. Young and middle-aged regularly cyclic female rats received sodium pentobarbital to block endogenous proestrous luteinizing hormone (LH) surges, followed by administration of various doses of human chorionic gonadotropin (hCG). Similar treatments were performed in middle-aged acyclic persistent-estrous (PE) females. Injection of hCG resulted in equivalent plasma hCG levels in each treatment group. At the lowest hCG dose tested, a significant rise in plasma P levels was observed in middle-aged cyclic rats, but not in young cyclic or middle-aged PE females. This unexpected finding may reflect accelerated follicular development in middle-aged cyclic females, as suggested by a previous study. At the intermediate dose, young and middle-aged cyclic but not PE rats displayed significantly increased P in response to hCG. At the highest dose tested, all three groups of rats displayed increased P levels after hCG stimulation. However, P concentrations were significantly lower in middle-aged PE than regularly cyclic females. Northern and slot blot hybridization analyses revealed that ovarian mRNA levels for cytochrome P450 side-chain cleavage, the rate-limiting enzyme in P synthesis, were markedly reduced in PE rats following hCG stimulation. These findings indicate that ovarian responsiveness to gonadotropin stimulation is impaired in middle-aged PE, but not regularly cyclic rats, and suggest influences of cycle status on the biochemical and molecular mechanisms regulating ovarian steroid production. Furthermore, these findings reveal that attenuated P production in middle-aged proestrous rats is due to attenuated preovulatory LH surges, rather than decreased ovarian sensitivity to LH.  相似文献   

7.
Consecutive daily plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol-17 beta (E2), progesterone (P4) and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OHP) were monitored in estrous rabbits and in these same doses during pseudopregnancy (PSP); these daily hormone levels, as well as the immediate post-coital changes in gonadotropin secretion, were similar to those in previous reports. To examine the pulsatile patterns of the gonadotropins and ovarian steroids, sequential, 10-min plasma samples were collected for 6 h from estrous does and on Days 3, 10, and 17 of PSP. All five hormones were measured in the serial samples from estrous and PSP Day 10 does; LH and FSH only were assayed in the remaining sequential samples. The amplitude and frequency of FSH pulses did not differ between any of these stages. In marked contrast, LH pulse amplitudes, and even pulse frequencies in Day 17 does, were profoundly increased during PSP above those in estrous does. Progestin secretions, both P4 and 20 alpha-OHP, also were sharply elevated in PSP Day 10 does as compared with those in estrous rabbits; the pulse amplitudes of both progestins were severalfold higher during PSP. P4 pulse frequencies were also increased at this time. Conversely, the parameters of E2 secretion did not differ between estrous and PSP Day 10 animals. In PSP Day 10 does, high amplitude pulses of both P4 and 20 alpha-OHP occurred simultaneously with high amplitude LH pulses. Simultaneous E2 and P4 pulses were evident in these same sequential plasma samples, and this E2-P4 pulse association was greater than that of 20 alpha-OHP pulses with E2 pulses. Our findings failed to identify conclusively the trophic stimulus for the progestin pulse patterns, but the mechanism may involve the coordinated action of LH and E2. The results do demonstrate that each gonadotropin and ovarian steroid is secreted in a pulsatile manner in both estrous and pseudopregnant rabbits. There are altered profiles in LH and progestin pulses, without major changes in FSH and E2 patterns, between the stages of estrus and PSP. The causes and consequences of these divergent endocrine shifts cannot be deduced from these data.  相似文献   

8.
Because cow ovaries do not contain a dominant follicle before Day 3 of the estrous cycle, we hypothesized that gonadotropin treatment early in the estrous cycle would induce growth of multiple follicles and could be used to induce superovulation. In Experiment 1, when 16 cows were treated with FSH-P beginning on Day 2 of the estrous cycle and were slaughtered on Day 5, all cows responded to gonadotropin treatment by exhibiting a large number ( approximately 19) of estrogenactive follicles >/= 6 mm. In Experiment 2, in response to FSH-P treatment from Day 2 to Day 7, and fenprostalene treatment on Day 6, 11 of 15 cows exhibited estrus and had a mean ovulation rate of 23.7 +/- 1.5. In Experiment 3, an FSH-P treatment regimen identical to that used in Experiment 2 was administered to cows beginning either on Day 2 (Day-2 cows; n=14) or Day 10 (Day-10 cows; n=11) of the estrous cycle. Twelve of 14 Day-2 cows and all Day-10 cows exhibited estrus after fenprostalene treatment. Day-2 cows exhibited 34.3 +/- 7.0 ovulations, which was less (P < 0.05) than that exhibited by Day-10 cows (48.3 +/- 4.4). However, the proportion of embryos recovered per corpus luteum was about 2-fold greater (P < 0.05) for Day-2 cows than for Day-10 cows (0.49 +/- 0.08 vs 0.27 +/- 0.06). These data indicate that beginning gonadotropin treatment early in the estrous cycle, when a dominant follicle is not present, provides an efficacious means to induce growth of multiple follicles and superovulation in cows. However, when FSH was administered for 6 d, beginning the treatment on Day 10 also resulted in a consistent and efficacious response.  相似文献   

9.
Proestrous hormonal profiles were characterized in lightly androgenized female rats prior to the onset of the delayed anovulatory syndrome (DAS). In these females, ovulatory failure and persistent vaginal estrus (PVE) occur at a very early age. Female Sprague-Dawley rats were injected with 10 micrograms testosterone propionate (TP) on postnatal Day 5. Control rats were untreated. All animals were weaned at 21 days of age, and following the onset of puberty, estrous cyclicity was monitored by vaginal smear. Rats showing regular 4-day cycles were used. Between 50-70 days of age, intra-atrial cannulae were implanted on a morning of proestrus (0700-0900 h) and blood was sampled at 2-h intervals from 1000 to 2000 h. Additional samples were taken at 0.5-h intervals from 1600 to 1800 h. Plasma was assayed for luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone (P) by radioimmunoassay (RIA). All animals were monitored for the onset of PVE or other alterations in estrous cyclicity. Females treated neonatally with TP that subsequently showed PVE by 150 days of age (PRE DAS) displayed a reduced peak amplitude (P less than 0.01) and delay in onset (1600 vs. 1400 h) of LH but not FSH secretion, when compared to controls. Females treated neonatally with TP that did not enter PVE by 150 days of age (No DAS) also showed a delayed rise in LH when compared to controls. However, the amplitude of LH secretion was not different from controls or PRE DAS females.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of 5 alpha-dihydroprogesterone (5 alpha-DHP) and 3 alpha, 5 alpha-tetrahydroprogesterone (3 alpha, 5 alpha-THP) on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) release were examined in the pregnant mare's serum gonadotropin (PMSG)-primed immature female rat (8 IU PMSG at 28 days of age) maintained in constant light. Control rats kept in 14L:10D conditions exhibited proestrous-like surges of LH and FSH release with peak levels attained at 1800 h on the second day after PMSG treatment. In rats exposed to constant light, the PMSG-induced surges of LH and FSH were not only delayed until 1000 h on the third day after PMSG, resulting in a delay in ovulation, but were also significantly attenuated when compared to the gonadotropin surges that occurred on Day 2 in rats kept under normal light-dark conditions. The administration of 5 alpha-DHP significantly enhanced the release of FSH at 1000 h on Day 3 when compared to constant light-exposed controls, but had no effect on LH. Treatment with 3 alpha, 5 alpha-THP selectively potentiated the release of LH at 1000 h on Day 3 and had an attenuating effect on FSH release on Days 2 and 3. These observations confirm earlier findings in the immature ovariectomized estrogen-primed rat and suggest that 5 alpha-DHP and 3 alpha, 5 alpha-THP may have significant roles in the regulation of FSH and LH secretion.  相似文献   

11.
The present studies were designed to characterize the gonadotropin response to exogenous steroids in neonatally androgenized female rats in various states of reproductive decline. Female rats were androgenized by the administration of a single injection of testosterone propionate (TP) (10 or 100 micrograms) at 5 days of age. Control rats received sesame oil. Treatment with 100 micrograms TP resulted in persistent vaginal estrus (PVE) from the onset of vaginal introitus. Treatment with 10 micrograms TP resulted in a period of regular estrous cyclicity followed by PVE. In the first experiment, all animals were ovariectomized between the ages of 60-85 days and the gonadotropin response to exogenously administered estradiol benzoate (EB) (10 micrograms/100 g BW) and progesterone (P) (2 mg/animal) was determined. When testing began 3 days following ovariectomy, control females exhibited significant (P less than 0.01) afternoon elevations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) following EB, which were further amplified following P. When ovariectomy occurred prior to the onset of PVE (PRE PVE), lightly androgenized females (10 micrograms TP) showed no significant afternoon gonadotropin increase following EB. Following P, phasic LH secretion was present but significantly (P less than 0.01) decreased in amplitude and delayed in onset versus that of control females. When ovariectomy occurred 3 to 4 wk following the onset of PVE, lightly androgenized females (PVE group) as well as fully androgenized females (FAS) (100 micrograms TP) showed no gonadotropin response to steroid priming.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Serum inhibin and FSH and FSH beta subunit mRNA levels were measured at 3h intervals throughout the 4 day estrous cycle in female rats and hourly between 1000 and 2400 h of proestrus. On proestrus, serum inhibin concentrations fell during the late morning-early afternoon, then increased transiently during the late afternoon gonadotropin surges. Inhibin levels decreased during the late evening of proestrus, coincident with the FSH surge-related rise in FSH beta mRNA levels. Serum inhibin remained relatively stable during estrus and early metestrus, but rose during the late evening of metestrus and remained elevated until early diestrus. FSH beta mRNA levels were elevated on late estrus and early metestrus and declined during the evening of metestrus as serum inhibin levels increased. These data show that concentrations of serum inhibin change during the estrous cycle and that a general inverse relationship exists between serum inhibin and FSH levels and FSH beta mRNA concentrations in the pituitary. This suggests that inhibin may inhibit FSH beta gene expression and FSH secretion during the 4 day cycle in female rats.  相似文献   

13.
To examine possible mechanisms involved in resistance of the ovine corpus luteum to the luteolytic activity of prostaglandin (PG)F(2alpha), the enzymatic activity of 15-hydroxyprostaglandin dehydrogenase (PGDH) and the quantity of mRNA encoding PGDH and cyclooxygenase (COX-2) were determined in ovine corpora lutea on Days 4 and 13 of the estrous cycle and Day 13 of pregnancy. The corpus luteum is resistant to the action of PGF(2alpha) on Days 4 of the estrous cycle and 13 of pregnancy while on Day 13 of the estrous cycle the corpus luteum is sensitive to the actions PGF(2alpha). Enzymatic activity of PGDH, measured by rate of conversion of PGF(2alpha) to PGFM, was greater in corpora lutea on Day 4 of the estrous cycle (P < 0.05) and Day 13 of pregnancy (P < 0.05) than on Day 13 of the estrous cycle. Levels of mRNA encoding PGDH were also greater in corpora lutea on Day 4 of the estrous cycle (P < 0. 01) and Day 13 of pregnancy (P < 0.01) than on Day 13 of the estrous cycle. Thus, during the early estrous cycle and early pregnancy, the corpus luteum has a greater capacity to catabolize PGF, which may play a role in the resistance of the corpus luteum to the actions of this hormone. Levels of mRNA encoding COX-2 were undetectable in corpora lutea collected on Day 13 of the estrous cycle but were 11 +/- 4 and 44 +/- 28 amol/microgram poly(A)(+) RNA in corpora lutea collected on Day 4 of the estrous cycle and Day 13 of pregnancy, respectively. These data suggest that there is a greater capacity to synthesize PGF(2alpha), early in the estrous cycle and early in pregnancy than on Day 13 of the estrous cycle. In conclusion, enzymatic activity of PGDH may play an important role in the mechanism involved in luteal resistance to the luteolytic effects of PGF(2alpha).  相似文献   

14.
Middle-aged female rats cease to display estrous cycles and exhibit a state of persistent estrus (PE). Under PE and chronic anovulatory conditions, there is a lack of spontaneous luteinizing hormone (LH) surges, but ovulations often occur after the females are caged with males. This study examined the effects of caging and mating with male rats on LH release in PE females, and assessed their reproductive capacity. Young cyclic rats received intra-atrial cannulae, and subsequently were sampled every 90 min during 1400-2130 h on proestrus for plasma LH measurement. PE females were similarly cannulated and sampled. Two days later, these PE rats received an s.c. injection of estradiol benzoate (EB) and were sampled on the following day. While young females exhibited the proestrous LH surge, PE rats maintained low plasma LH levels persistently and were unable to increase LH release after EB administration. On the other hand, when cannulated PE females were caged with fertile males, 92% displayed lordotic responses, and 75% of those sexually receptive PE females exhibited LH surges followed by ovulation. The initiations of the lordotic response and the LH surge both were more rapid in PE females caged with males beginning at 1500 h than at 1400 h. In contrast, when individual PE rats were placed in clean boxes without males, only one of 13 females showed an increase in LH release followed by ovulation. Separate groups of PE rats were mated with fertile males, and subsequently used for counting the number of blastocysts in the uteri on Day 5 of pregnancy and the number of pups delivered at term.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We examined the positive and negative feedback effects of estradiol (E2) on luteinizing hormone (LH) and prolactin (Prl) secretion in adult male and female rats which were gonadectomized within 24 h after birth (long-term castrates) and compared these responses to those elicited by E2 in short-term castrated (7 days) adult males and females. The high serum E2 did not reduce the elevated serum LH concentrations in long-term castrates until 4 days of treatment. Also, only after negative feedback was established were the positive feedback actions of E2 observed. In contrast, Prl surges were observed after 2 days of E2, and baseline Prl serum levels were elevated by Day 3 of E2 in long-term castrated male and female rats. Some long-term castrates lacked both LH and Prl surges, and E2 was ineffective in altering basal gonadotropin secretion in these animals. Short-term castrated males had elevated serum Prl levels but no Prl surges. Seemingly, when the hypothalamus is deprived of estrogen or androgen from birth to adulthood, an equal percentage of males and females become refractory to the positive feedback effects of estrogen during adulthood. Thus, it is difficult to separate castration effects from those which may be produced by the endogenous androgen secreted during the first 26 h of life.  相似文献   

16.
Nuclear and cytoplasmic exchange assays were utilized to quantify receptors for estradiol-17 beta (E2) and progesterone (P4) in hypothalamic and pituitary tissues from 4-6 gilts each on Days 1, 5, 10, 15 and 18 of the estrous cycle and from 4-5 gilts each on Days 5, 10, 15, 21 and 30 of pregnancy. No differences in the number of cytoplasmic E2 or P4 receptors in the pituitary were found from Days 1 to 15 of the estrous cycle (P greater than 0.05). However, on Day 18, the quantities of E2 and P4 receptors were 64-fold and 25-fold lower (P less than 0.01) than those found during Days 1 to 15 of the estrous cycle. No differences in the number of nuclear receptors for E2 in the pituitary were observed from Days 1 to 18 of the estrous cycle, but nuclear receptors for P4 were 2-fold higher (P less than 0.01) on Day 1 than Days 5 to 18. In hypothalamic tissue, the numbers of cytoplasmic and nuclear receptors for E2 and P4 were lower (P less than 0.05) on Day 18 than Day 10 of the cycle. The quantity of most steroid receptors decreased between Days 15 and 18 in nonpregnant gilts as luteolysis occurred and a new follicular phase was initiated. Pregnant pigs on Days 5, 10 and 15 had decreased pituitary receptors for E2 and P4 when compared with cycling animals on these days. In general, numbers of receptors in hypothalamic tissue did not differ between pregnant and nonpregnant pigs except for decreased (P less than 0.01) nuclear P4 receptors on Day 15.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Three experiments were conducted on Texel ewes to study the influence of prostaglandin F(2alpha) (PGF(2alpha)), prolactin (PRL), estradiol (E(2)), and gonadotrophin releasing hormone (GnRH) on postpartum reproductive activity. In Experiment 1, oral administration of indomethacin (25 to 50 mg/day/ewe) from Day 3 post partum to the first detected estrus inhibited plasma 13, 14-dihydro-15-keto, PGF(2alpha) (PGFM) concentrations (P < 0.0001). This treatment resulted in an earlier rise in the frequency and amplitude of luteinizing hormone (LH) pulses and a resumption of estrous behavior (P < 0.05), while ovarian activity estimated by progesterone (P(4)) concentrations resumed to the same extent in treated ewes and controls. Bromocriptine treatment (2.5 mg/day/ewe) reduced plasma PRL levels (P < 0.0001) but had no effect on ovarian activity as evidenced by P(4) and resumption of estrus or on either the frequency or amplitude of the LH pulse. In Experiment 2, a single injection of GnRH agonist (42 mcg of buserelin/ewe) on Day 16 post partum resulted in an abrupt elevation of plasma LH concentrations; mean LH values were 18 to 27 times higher when compared with those of the control ewes. Two days after this treatment, ovulations occurred in 5 of the treated ewes and in 2 of the control ewes. This induced ovarian activity was not associated with estrous behavior; however, after an adequate subsequent luteal phase all the treated ewes displayed estrus, the resumption of estrus thus being earlier in treated than in control ewes (P < 0.01). In Experiment 3, E(2) supplementation from Day 16 to Day 28 post partum increased the number of LH pulses per 6 hours in suckling ewes (P < 0.05) and induced earlier resumption of estrus in dry ewes but not in suckling ewes (P < 0.01). Luteal function was detected about 5 and 8 days after the insertion of E(2) implants in 4 dry ewes and in 2 suckling ewes, respectively.  相似文献   

18.
Progesterone (P(4)), 17beta- estradiol (E(2)) and androstenedione (A(4)) plasma concentrations were correlated with palpated corpora lutea (CL), recovered embryos and viable embryos in 13 Nelore cows induced to superovulate with FSH, starting on Day 10 of the estrous cycle. Administration of FSH increased the number of ovulations and recovered embryos. Plasma P(4), E(2) and A(4) levels on Day 0 and of P(4) on Days 10 and 11 of the cycle were not correlated with the superovulatory response. Determination of CL by palpation per rectum was used to estimate the number of recovered embryos. Plasma P(4) levels higher than 1 ng/ml on the induced estrus day (Day 14) had an adverse effect on the embryo viability rate. Plasma E(2) concentrations on Day 14 were positively correlated with the number of viable embryos collected, a correlation that has not been previously reported. The present data indicate that plasma P(4) and E(2) concentrations in FSH-PGF2alpha-treated Nelore cows are useful for the identification of 2 different populations of Nelore donors and are correlated with superovulatory response and, particularly, with the number of viable embryos.  相似文献   

19.
The efficacy of GnRH and PGF2alpha (7-day injection interval) for estrus synchronization is diminished by estrous expression before PGF2alpha (premature estrus; PE). Effects of modifications to GnRH-PGF2alpha protocols on the incidence of PE and other indicators of reproductive performance were evaluated. In Experiment 1, Angus-based crossbred cows (n=51) received 25 mg of PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity and interval postpartum to receive GnRH 100 microg i.m. on either Day -7 or Day -6. Estrous detection and AI were conducted from Day -3 to Day 5. Treatment had no effect on the incidence of PE, estrous response, conception rate per AI or synchronized pregnancy rate (6- vs. 7-day interval; 8 vs. 15%; 92 vs. 93%; 77 vs. 76%; 71 vs. 70%, respectively). In Experiment 2, Angus cows (n=150) received GnRH 100 microg i.m. on Day -7 and 25 mg PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity, interval postpartum, and body condition score to receive either no further treatment (Control) or 0.5 mg melengestrol acetate/hd/d from Day -7 to Day -1 (MGA). Estrous detection and AI were conducted from Day -2 to Day 7. Fewer (P < 0.05) MGA-treated cows were detected in PE (0%) compared to controls (7%). Treatment had no effect on estrous response or synchronized pregnancy rates (Control vs. MGA; 78 vs. 84%; 52 vs. 60%, respectively). Conception rate per AI of cows > or = 60 days postpartum were not affected by treatment (Control vs. MGA; 79 vs. 73%) however, control cows < 60 days postpartum tended (P < 0.10) to have lower conception rates per AI (39%) than did their MGA-treated counterparts (69%). In summary, 6- and 7-day GnRH-PGF2alpha injection intervals resulted in similar synchronized reproductive performance. Inclusion of MGA feeding between GnRH and PGF2alpha injections eliminated the occurrence of premature estrus and improved conception rate per AI of late-calving cows.  相似文献   

20.
The objectives of this experiment were to determine if subnormal levels of progesterone (P4) indicative of luteal insufficiency influence (1) pulsatile release of luteinizing hormone (LH), (2) the interval to the preovulatory surge of LH after removal of P4, and (3) the secretion of P4 during the estrous cycle subsequent to administration of subnormal levels of P4. On Day 5 (Day = 0 day of estrus) of the estrous cycle, cows received P4-releasing intravaginal devices (PRID) to produce normal (2 PRIDs; n = 7) or subnormal (0.5 PRID; n = 6) concentrations of P4. Five cows served as controls. On Day 10, serial blood samples were collected from all cows. Collection of blood samples was again initiated on Day 17 in cows receiving PRIDs. The PRIDs were removed and blood collection continued for 78 h. Daily blood samples were collected from all animals for 42 days subsequent to estrus (estrous cycles 1 and 2, respectively). During estrous cycle 1, mean concentration of P4 was lower (p less than 0.05) and frequency of pulses of LH was higher (p less than 0.05) in cows receiving subnormal P4 than in cows receiving normal P4 and control cows. Plasma concentrations of estradiol (E2) were higher (p less than 0.05) on Days 9-16 of estrous cycle 1 in cows receiving subnormal P4 than in cows receiving normal P4 or in control cows. Concentrations of E2 were greater (p less than 0.05) at 6, 18, and 30 h following removal of PRIDs in cows receiving subnormal P4 than in cows receiving normal P4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号