首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saponin-permeabilized rat pancreatic islets degraded exogenously added inositol 1,4,5-trisphosphate (IP3), and degradation was inhibited in the presence of either fructose 1,6-bisphosphate or diphosphoglycerate. The addition of either fructose-1,6-P2 or diphosphoglycerate to 45Ca2+-labeled permeabilized islets potentiated 45Ca2+ release caused by IP3 (by either exogenously added IP3 or IP3 generated endogenously in the presence of carbachol or guanosine 5'-3-O-(thio)triphosphate (GTP gamma S). The effect of diphosphoglycerate and fructose-1,6-P2 on 45Ca2+ release correlated well with the effects of these agents on the recovery of radioactivity in IP3. These results further support our previous proposal that in pancreatic islets intracellular calcium mobilization may be sustained in part via the inhibition of IP3 degradation by metabolites produced during stimulation with insulinotropic concentrations of glucose (Rana, R.S., Sekar, M.C., Hokin, L.E., and MacDonald, M.J. (1986) J. Biol. Chem. 261, 5237-5240).  相似文献   

2.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

3.
Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.  相似文献   

4.
Electrothermal atomic-absorption spectroscopy was employed for measuring manganese in beta-cell-rich pancreatic islets microdissected from ob/ob mice. The islet content of endogenous manganese was 80 mumol/kg dry wt., which is about half as much as found in the exocrine pancreas. The initial uptake was characterized by two components, with approximate Km values of 35 microM and 3.7 microM respectively. After 60 min of incubation with 0.25 mM-Mn2+, the intracellular concentration of manganese corresponded to an almost 25-fold accumulation compared with that of the extracellular medium. When exposed to 20 mM-D-glucose, the islets retained more manganese, owing to suppression of its mobilization. The glucose inhibition of efflux was prompt and reversible, as indicated from direct recordings of manganese in a perifusion medium. D-Glucose was an equally potent inhibitor of efflux in the presence of 15 microM- and 1.28 mM-Ca2+. The inhibitory action disappeared when metabolism was suppressed by adding 0.1 mM-N-ethylmaleimide or by lowering the temperature from 37 degrees C to 2 degrees C. At a concentration of 0.25 mM, Mn2+ abolished the insulin-releasing action of D-glucose, exerting only moderate suppression of its metabolism. The addition of Mn2+ resulted in inhibition of basal insulin release in the presence of 1.28 mM-Ca2+, but not in a Ca2+-deficient medium. The studies indicate that the previously observed phenomenon of glucose inhibition of 45Ca efflux has a counterpart in the suppression of manganese mobilization from the pancreatic islets. With the demonstration of a pronounced glucose inhibition of manganese efflux, it is evident that Mn2+ may represent a useful tool for exploring the mechanism of glucose-induced retention of calcium in the pancreatic beta-cells.  相似文献   

5.
In pancreatic islets of fetal rats the effect of glucose (3 and 16.7 mM), glyceraldehyde (10 mM), leucine (20 mM), b-BCH (20 mM), tolbutamide (100 micrograms/ml), glibenclamide (0.5 and 5.0 micrograms/ml) arginine (20 mM), KCl (20 mM) and theophylline (2.5 mM) on 45Ca2+ net uptake and secretion of insulin was studied. All compounds tested failed to stimulate 45Ca2+ net uptake. However, in contrast to glucose and glyceraldehyde, leucine, b-BCH, tolbutamide, glibenclamide, arginine, KCl and theophylline significantly stimulated release of insulin. This effect could not be inhibited by the calcium antagonist verapamil (20 microM). Elevation of the glucose concentration from 3 to 5.6 mM did not alter 86Rb+ efflux of fetal rat islets but inhibited 86Rb+ efflux of adult rat islets. Stimulation of 86Rb+ efflux with tolbutamide (100 micrograms/ml), leucine (20 mM) or b-BCH (20 mM) in the presence of 3 mM glucose was also ineffective in fetal rat islets. Our data suggest that stimulation of calcium uptake via the voltage dependent calcium channel is not possible in the fetal state. They also provide evidence that stimulators of insulin release which are thought not to act through their metabolism, initiate insulin secretion from fetal islets by a mechanism which is different from stimulation of calcium influx.  相似文献   

6.
The inhibitory effect of glucose upon 45Ca efflux from prelabeled pancreatic islets was simulated in a mathematical model for Ca2+-cyclic AMP interaction in the process of glucose-induced insulin release. At variance with a previous interpretation, it was postulated that glucose inhibits 45Ca efflux by facilitating the uptake of the cation by the vacuolar system. The latter facilitation did not hinder glucose from provoking a rapid accumulation of cytosolic Ca2+ and, hence, insulin release. The postulated facilitation was also suitable in simulating the effect of glucose upon 45Ca efflux, uptake, and intracellular distribution in the pancreatic islets.  相似文献   

7.
1. The rate of 45Ca2+ efflux from prelabelled rat islets of Langerhans was stimulated by carbachol in a dose-dependent manner. 2. Significant stimulation occurred in the presence of 0.2 microM-carbachol; the response was half-maximal at 3-5 microM and was maximal at 20 microM. 3. Stimulation of 45Ca2+ efflux by carbachol was not dependent on the presence of extracellular Ca2+ and was enhanced in Ca2+-depleted medium. 4. Stimulation of 45Ca2+ efflux by 5 microM-carbachol occurred independently of any change in [3H]arachidonic acid release in prelabelled islets, and probably reflected generation of inositol trisphosphate in the cells. 5. The amphipathic peptide melittin failed to increase islet-cell 45Ca2+ efflux at a concentration of 1 microgram/ml, and caused only a modest increase at 10 micrograms/ml. 6. Despite its failure to increase 45Ca2+ efflux, melittin at 1 microgram/ml caused a marked enhancement of 3H release from islets that had been prelabelled with [3H]arachidonic acid. 7. The stimulation of 3H efflux caused by melittin correlated with a dose-dependent increase in the unesterified [3H]arachidonic acid content of prelabelled islets and with a corresponding decrease in the extent of labelling of islet phospholipids. 8. Combined addition of melittin (1 microgram/ml) and 5 microM-carbachol to perifused islets failed to augment 45Ca2+ efflux relative to that elicited by carbachol alone. 9. The data indicate that melittin promotes an increase in arachidonic acid availability in intact rat islets. They do not, however, support the proposal that this can either directly reproduce or subsequently modify the extent of intracellular Ca2+ mobilization induced by agents that cause an increase in inositol trisphosphate.  相似文献   

8.
Previous studies have demonstrated that myo-inositol 1,4,5-trisphosphate (IP3) mobilizes Ca2+ from the endoplasmic reticulum (ER) of digitonin-permeabilized islets and that an increase in intracellular free Ca2+ stimulates insulin release. Furthermore, glucose stimulates arachidonic acid metabolism in islets. In digitonin-permeabilized islets, exogenous arachidonic acid at concentrations between 1.25 to 10 microM elicited significant Ca2+ release from the ER at a free Ca2+ concentration of 0.1 microM. Arachidonic acid-induced Ca2+ release was not due to the metabolites of arachidonic acid. Arachidonic acid induced a rapid release of Ca2+ within 2 min. Comparison of arachidonic acid-induced Ca2+ release with IP3-induced Ca2+ release revealed a similar molar potency of arachidonic acid and IP3. The combination of both arachidonic acid and IP3 resulted in a greater effect on Ca2+ mobilization from the ER than either compound alone. The mass of endogenous arachidonic acid released by islets incubated with 28 mM glucose was measured by mass spectrometric methods and was found to be sufficient to achieve arachidonic acid concentrations equal to or exceeding those required to induce release of Ca2+ sequestered in the ER. These observations indicate that glucose-induced arachidonic acid release could participate in glucose-induced Ca2+ mobilization and insulin secretion by pancreatic islets, possibly in cooperation with IP3.  相似文献   

9.
Summary The mechanisms by which glucose regulates calcium fluxes in pancreatic endocrine cells were investigated by monitoring the efflux of45Ca from prelabeled and perifused rat pancreatic islets. In the absence of both extracellular calcium and glucose, partial or total removal of extracellular sodium decreases the efflux of45Ca from prelabeled islets. Glucose also reduces the efflux of45Ca from islets perifused in the absence of extracellular calcium. This inhibitory effect of glucose on45Ca efflux is decreased by half when the extracellular concentration of sodium is lowered to 24mm. In the absence of extracellular calcium but presence of glucose, partial or even total removal of extracellular sodium fails to decrease the efflux of45Ca. At normal extracellular calcium concentration (1mm) partial removal of extracellular sodium dramatically increases45Ca efflux from pancreatic islets. This increase in45Ca efflux is partially but not totally suppressed by either 16.7mm glucose or cobalt. It is totally suppressed by 4.4mm glucose or by the combination of 16.7mm glucose and cobalt. At normal extracellular calcium concentration, glucose initially reduces and subsequently increases45Ca efflux. The initial fall is unaffected by tetrodotoxin but decreased by 50% at low extracellular sodium concentration (24mm). The present results suggest the existence in pancreatic endocrine cells of a glucose-sensitive process of sodium-calcium counter-transport. By inhibiting such a process, glucose may decrease the efflux of calcium from islet cells. The effect of glucose is not mediated by an increase in intracellular sodium concentration. It could contribute to the intracellular accumulation of calcium which is thought to trigger insulin release.This paper is the IVth in a series.  相似文献   

10.
beta-Cell-rich pancreatic islets were microdissected from ob/ob-mice and used for studies of 45Ca uptake and washout. Irrespective of whether the experiments were performed at 21 or 37 degrees C both glucose and phosphate stimulated the net uptake of lanthanum-nondisplaceable 45Ca. The stimulatory effect of phosphate was additive to that produced by glucose. 45Ca incorporated in response to phosphate differed from that taken up in the presence of 20 mM glucose in being easily washed out although it was not affected by the glucose concentration of the washing medium. The efflux of 45Ca was reduced after introducing phosphate into a medium used to perifuse islets which had accumulated 45Ca in response to 20 mM glucose. This suggests that the outward calcium transport can be influenced also by intracellular trapping of the cation. The glucose-stimulated insulin release was inhibited by phosphate; an effect reversed by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. It is concluded that a common effect of glucose and phosphate is to trap calcium in the pancreatic beta-cells but that there are fundamental differences between their effects on intracellular distribution of calcium and on insulin release.  相似文献   

11.
E E Keha  H Ronft  G B Kresze 《FEBS letters》1982,145(2):289-292
45Ca2+ incorporated in response to glucose was selectively mobilized from the beta-cell-rich pancreatic islets of ob/ob-mice after raising the intracellular Na+ by removal of K+ or addition of ouabain or veratridine. Also studies of insulin release indicated opposite effects of glucose and Na+ on the intracellular sequestration of calcium. The fact that glucose inhibits insulin release induced by raised intracellular Na+ indicates that this sugar can lower the cytoplasmic [Ca2+]. The concept of a dual action of glucose on the cytoplasmic [Ca2+]. The concept of a dual action of glucose on the cytoplasmic [Ca2+] might well explain previous observations of an inhibitory component in the glucose action on the 45Ca2+ efflux.  相似文献   

12.
Addition of pyruvate to rat islets perifused in the presence of 5 mM-glucose elicited an immediate pronounced biphasic stimulation of insulin secretion. At lower concentrations of glucose (2.5 mM), only the initial, transient, phase of secretion was observed. Pyruvate inhibited 45Ca2+ efflux from islets at 2.5 mM-glucose and stimulated efflux at 5 mM-glucose. Pyruvate also decreased the rate of efflux of 86Rb+ from perifused islets. A marked stimulation of insulin secretion and 45Ca2+ efflux rate was observed in response to 3-fluoropyruvate and 3-bromopyruvate, compounds which inhibited oxidative metabolism of [14C]glucose and [14C]pyruvate in islets. The stimulatory effects of 3-fluoro- and 3-bromo-pyruvate were associated with enhanced 86Rb+ efflux. Withdrawal of pyruvate or halogenated analogues from the perfusate resulted in a secondary stimulation of insulin release, 45Ca2+ efflux and, to some extent, 86Rb+ efflux rates. Pyruvate, 3-fluoropyruvate and 3-bromopyruvate were all effective in promoting intracellular acidification and a rise in cytosolic Ca2+ concentration, as judged from fluorescence measurements in HIT-T15 cells loaded with 2',7'-biscarboxyethyl-5'(6')-carboxyfluorescein and Quin 2 respectively. It is proposed that oxidative metabolism of pyruvate is not a prerequisite for its stimulatory actions on pancreatic beta-cells. An alternative mechanism of activation by pyruvate and its halogenated derivatives is proposed, based on the possible electrogenic flux of these anions across the cell membrane.  相似文献   

13.
In rat pancreatic islets the effects of cholecystokinin-8 (CCK8) on glucose-mediated insulin release, 45Ca2+ net uptake, 45Ca2+ efflux, 86Rb+ efflux, cAMP- and cGMP levels were studied. In the presence of a substimulatory glucose concentration (3 mM) CCK8 concentrations of up to 1 microM had no effect on insulin release, but CCK8 at 10 nM potentiated the stimulatory effect of glucose (11.1 mM). 10 nM CCK8 enhanced glucose-stimulated 45Ca2+ net uptake but was ineffective at substimulatory glucose levels. CCK8 had no effect on cAMP and cGMP levels in the presence of 11.1 mM glucose, CCK8 increased 86Rb+ (a measure of K+) in the presence of both 3 and 11.1 mM glucose. This effect was abolished when Ca2+ was omitted from the perifusion medium. CCK8 did not alter glucose (11.1 mM)-stimulated 45Ca2+ efflux rate. These data indicate that (1) CCK8 potentiates glucose-stimulated insulin secretion possibly via an effect on Ca2+ uptake, 2) by affecting Ca2+ uptake, CCK8 enhances K+ efflux, and 3) CCK8 does not mediate its effect via cAMP or cGMP. With respect to 86Rb+ efflux the mechanism of CCK8 action appears to be different from that of glucose. When the mechanism of CCK action on islets is compared with that on exocrine pancreas (data from others) there are similarities (importance of Ca2+ uptake and non-importance of cAMP and cGMP).  相似文献   

14.
The effects of three types of amino acids on 45Ca2+ fluxes in rat pancreatic islets have been compared. Alanine, a non-insulinotropic neutral amino acid, transported with Na+, increased 45Ca2+ efflux in the presence or in the absence of extracellular Ca2+, but not in the absence of Na+. Its effects in Na+-solutions were practically abolished by 7 mM-glucose. Alanine slightly stimulated 45Ca2+ influx (5 min uptake) only when Na+ was present. Two insulinotropic cationic amino acids (arginine and lysine) triggered similar changes in 45Ca2+ efflux. They accelerated the efflux in the presence of Ca2+ and inhibited the efflux in a Ca2+-free medium, whether glucose was present or not. In an Na+-free Ca2+-medium, arginine and lysine markedly accelerated 45Ca2+ efflux, but this effect was suppressed by 7 mM-glucose. Arginine stimulated 45Ca2+ influx irrespective of the presence or absence of glucose and Na+. Leucine, a neutral insulinotropic amino acid well metabolized by islet cells, inhibited 45Ca2+ efflux from the islets in a Ca2+-free medium; this effect was potentiated by glutamine. In the presence of Ca2+ and Na+, leucine was ineffective alone, but triggered a marked increase in 45Ca2+ efflux when combined with glutamine. In an Na+-free Ca2+-medium, leucine accelerated 45Ca2+ efflux to the same extent with or without glutamine. Leucine also stimulated 45Ca2+ influx in the presence or in the absence of Na+, but its effects were potentiated by glutamine only in the presence of Na+. The results show that amino acids of various types cause distinct changes in 45Ca2+ fluxes in pancreatic islets. Certain of these changes involve an Na+-mediated mobilization of cellular Ca2+ from sequestering sites where glucose appears to exert an opposite effect.  相似文献   

15.
N G Morgan  R D Hurst 《FEBS letters》1988,227(2):153-156
The neuropeptide bombesin provoked a dose-dependent stimulation of 45Ca2+ efflux from pre-loaded islets of Langerhans. This response occurred rapidly, was not sustained and did not depend on the presence of extracellular calcium, suggesting that it resulted from the mobilization of intracellular calcium stores. Under conditions when large increases in 45Ca2+ efflux were observed, bombesin completely failed to stimulate the rate of insulin secretion. Similar results were also obtained with the muscarinic cholinergic agonist, carbachol. The data suggest that the release of calcium from intracellular pools is not sufficient to induce an increase in insulin secretion in normal islet cells.  相似文献   

16.
During perifusion with medium deprived of Ca2+, addition of glucose or omission of Na+ resulted in prompt and quantitatively similar inhibitions of 45Ca efflux from beta-cell rich pancreatic islets microdissected from ob/ob mice. Glucose had no additional inhibitory effect when Na+ was isoosmotically replaced by sucrose or choline+. When K+ was used as a substitute for Na+, the inhibitory effect of Na+ removal on 45Ca efflux became additive to that of glucose. The observation that glucose can be equally effective in inhibiting 45Ca efflux in the presence or absence of Na+ is difficult to reconcile with the postulate that the Na+-Ca2+ countertransport mechanism is a primary site of action for glucose.  相似文献   

17.
The interaction between furosemide, calcium and D-glucose on the 86Rb+ efflux from beta-cell-rich mouse pancreatic islets was investigated in a perifusion system with high temporal resolution. Raising the glucose concentration from 4 to 20 mM induced an initial decrease in 86Rb+ efflux, which was followed by a steep increase and then a secondary decrease. Removal of extracellular calcium increased the 86Rb+ efflux at 4 mM D-glucose but reduced it at 20 mM. The initial biphasic changes in 86Rb+ efflux induced by 20 mM D-glucose were inhibited by calcium deficiency. Furosemide (100 microM) reduced the 86Rb+ efflux rate both at 4 and 20 mM D-glucose and the magnitudes appeared to be similar at either glucose concentration. Furosemide (100 microM) reduced the glucose-induced (10 mM) 45Ca+ uptake but did not affect the basal (3 mM D-glucose) 45Ca+ uptake. However, the ability of furosemide (100 microM) to reduce the 86Rb+ efflux at a high glucose concentration (20 mM) was independent of extracellular calcium. The inhibitory effects of furosemide and calcium deficiency on the 86Rb+ efflux rate appeared to be additive. It is concluded that the effect of furosemide on 86Rb+ efflux is not secondary to reduced calcium uptake and that the effects of furosemide and calcium deficiency are mediated by different mechanisms. The effect of furosemide is compatible with inhibition of loop diuretic-sensitive co-transport of Na+, K+ and Cl- and the effect of calcium deficiency with reduced activity of calcium-regulated potassium channels.  相似文献   

18.
Mouse islets were used to define the glucose-dependence and extracellular Ca2+ requirement of muscarinic stimulation of pancreatic beta-cells. In the presence of a stimulatory concentration of glucose (10 mM) and of Ca2+, acetylcholine (0.1-100 microM) accelerated 3H efflux from islets preloaded with myo-[3H]inositol. It also stimulated 45Ca2+ influx and efflux, 86Rb+ efflux and insulin release. In the absence of Ca2+, only 10-100 microM-acetylcholine mobilized enough intracellular Ca2+ to trigger an early but brief peak of insulin release. At a non-stimulatory concentration of glucose (3 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ and 86Rb+ efflux in the presence and absence of extracellular Ca2+. However, only 100 microM-acetylcholine marginally increased 45Ca2+ influx and caused a small, delayed, stimulation of insulin release, which was abolished by omission of Ca2+. At a maximally effective concentration of glucose (30 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ influx and efflux only slightly, but markedly amplified insulin release. Again, only 100 microM-acetylcholine mobilized enough Ca2+ to trigger a peak of insulin release in the absence of Ca2+. The results thus show that only high concentrations of acetylcholine (greater than or equal to 10 microM) can induce release at low glucose or in a Ca2+-free medium. beta-Cells exhibit their highest sensitivity to acetylcholine in the presence of Ca2+ and stimulatory glucose. Under these physiological conditions, the large amplification of insulin release appears to be the result of combined effects of the neurotransmitter on Ca2+ influx, on intracellular Ca2+ stores and on the efficiency with which Ca2+ activates the releasing machinery.  相似文献   

19.
Inositol 1,4,5-trisphosphate (IP3) rapidly increased 45Ca2+ efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked 45Ca2+ release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked 45Ca2+ release. IP3 strongly stimulated 45Ca2+ efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced 45Ca2+ efflux suggests that IP3 activated a Ca2+ channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction.  相似文献   

20.
Electrothermal atomic-absorption spectroscopy was employed for measuring manganese in beta-cell-rich pancreatic islets isolated from ob/ob mice. The efflux from preloaded islets was estimated from the amounts remaining after 30 min of subsequent test incubations in the absence of Mn2+. An increase in the extracellular Mg2+ concentration promoted the Mn2+ efflux and removal of Na+ from a Ca2+-deficient medium had the opposite effect. Addition of 25 mM-K+ failed to affect Mn2+ outflow as did 3-isobutyl-1-methylxanthine and dibutyryl cyclic AMP. Whereas tolbutamide caused retention of manganese, the ionophore Br-X537A promoted an efflux. D-Glucose was equally potent in retaining the islet manganese when the external Ca2+ concentration ranged from 15 microM to 6.30 mM. Subcellular-fractionation experiments indicated a glucose-stimulated incorporation of manganese into all fractions except the microsomes. The effect was most pronounced in the mitochondrial fraction, being as high as 164%. The glucose-induced uptake of intracellular 45Ca was abolished in the presence of 0.25 mM-Mn2+. When added to medium containing 2.5 mM-Mn2+, glucose even tended to decrease 45Ca2+ uptake. The inhibitory effect of Mn2+ was apparent also from a diminished uptake of 45Ca into all subcellular fractions. The efflux of 45Ca2+ was markedly influenced by Mn2+ as manifested in a prominent stimulation followed by inhibition. In addition to demonstrating marked interactions between fluxes of Mn2+ and Ca2+, the present studies support the view that the glucose inhibition of the efflux of bivalent cations from pancreatic beta-cells is accounted for by their accumulation in the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号