首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biofilm-forming strain of sulfate-reducing bacteria (SRB), isolated from a naturally occurring mixed biofilm and identified by 16S rDNA analysis as a strain of Desulfomicrobium norvegicum, rapidly removed 200 μM selenite from solution during growth on lactate and sulfate. Elemental selenium and elemental sulfur were precipitated outside SRB cells. Precipitation occurred by an abiotic reaction with bacterially generated sulfide. This appears to be a generalized ability among SRB, arising from dissimilatory sulfide biogenesis, and can take place under low redox conditions and in the dark. The reaction represents a new means for the deposition of elemental sulfur by SRB under such conditions. A combination of transmission electron microscopy, environmental scanning electron microscopy, and cryostage field emission scanning electron microscopy were used to reveal the hydrated nature of SRB biofilms and to investigate the location of deposited sulfur-selenium in relation to biofilm elements. When pregrown SRB biofilms were exposed to a selenite-containing medium, nanometer-sized selenium-sulfur granules were precipitated within the biofilm matrix. Selenite was therefore shown to pass through the biofilm matrix before reacting with bacterially generated sulfide. This constitutes an efficient method for the removal of toxic concentrations of selenite from solution. Implications for environmental cycling and the fate of sulfur and selenium are discussed, and a general model for the potential action of SRB in selenium transformations is presented.  相似文献   

2.
We successfully isolated a novel aerobic chemolithotrophic sulfur-oxidizing bacterium, designated strain SO07, from wastewater biofilms growing under microaerophilic conditions. For isolation, the use of elemental sulfur (S(0)), which is the most abundant sulfur pool in the wastewater biofilms, as the electron donor was an effective measure to establish an enrichment culture of strain SO07 and further isolation. 16S rRNA gene sequence analysis revealed that newly isolated strain SO07 was affiliated with members of the genus Halothiobacillus, but it was only distantly related to previously isolated species (89% identity). Strain SO07 oxidized elemental sulfur, thiosulfate, and sulfide to sulfate under oxic conditions. Strain SO07 could not grow on nitrate. Organic carbons, including acetate, propionate, and formate, could not serve as carbon and energy sources. Unlike other aerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 150 mM was negligible. In situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells hybridized with a probe specific for strain SO07 were mainly present in the oxic biofilm strata (ca. 0 to 100 micro m) and that they often coexisted with sulfate-reducing bacteria in this zone. These results demonstrated that strain SO07 was one of the important sulfur-oxidizing populations involved in the sulfur cycle occurring in the wastewater biofilm and was primarily responsible for the oxidation of H(2)S and S(0) to SO(4)(2-) under oxic conditions.  相似文献   

3.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

4.
The Ancaster sulfur spring is a cold (9°C) sulfur spring located near Ancaster, Ontario, Canada, which hosts an abundant and diverse microbial mat community. We conducted an extensive microscopical study of the microbial community of this spring using a number of techniques: phase light, confocal scanning laser microscopy, conventional scanning electron microscopy using both chemical/critical point drying and cryofixation preparative techniques, environmental scanning electron microscopy, and transmission electron microscopy. The latter two techniques were coupled with energy dispersive X-ray spectrometry for elemental analysis to complement wet geochemical data collected on bulk spring water and mat pore water. In the anoxic source of the spring, green and purple sulfur bacteria were found together with a sulfide-utilizing type of cyanobacteria that had the unusual characteristic of storing colloidal sulfur intracellularly. Deeper within the source, the mats were dominated by green sulfur bacteria and thick biofilms of cells that precipitated Fe and Zn sulfide minerals on their surfaces. Downstream from the source, thick, filamentous white mats lined the stream channel, formed by a diverse mass of nonphotosynthetic sulfur oxidizers, which were responsible for forming thick masses of spherical colloidal sulfur. These were distinguished by ESEM-EDS from cells by their simple elemental composition (only S was detected). Aqueous geochemistry analysis by ICP-MS showed that some elements (Fe, C, P, Zn, Mg, Ba) were present at higher levels in mat pore water than in bulk spring water. Our approach allowed us to gain an appreciation of the characteristics of this microbial community and allowed us to develop a good understanding of the types of microorganisms present and infer some of the relationships among the members of the community. In addition, we wish to convey the utility of a thorough microscopical approach in geomicrobiological and microbial ecology studies.  相似文献   

5.
6.
We successfully isolated a novel aerobic chemolithotrophic sulfur-oxidizing bacterium, designated strain SO07, from wastewater biofilms growing under microaerophilic conditions. For isolation, the use of elemental sulfur (S0), which is the most abundant sulfur pool in the wastewater biofilms, as the electron donor was an effective measure to establish an enrichment culture of strain SO07 and further isolation. 16S rRNA gene sequence analysis revealed that newly isolated strain SO07 was affiliated with members of the genus Halothiobacillus, but it was only distantly related to previously isolated species (89% identity). Strain SO07 oxidized elemental sulfur, thiosulfate, and sulfide to sulfate under oxic conditions. Strain SO07 could not grow on nitrate. Organic carbons, including acetate, propionate, and formate, could not serve as carbon and energy sources. Unlike other aerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 150 mM was negligible. In situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells hybridized with a probe specific for strain SO07 were mainly present in the oxic biofilm strata (ca. 0 to 100 μm) and that they often coexisted with sulfate-reducing bacteria in this zone. These results demonstrated that strain SO07 was one of the important sulfur-oxidizing populations involved in the sulfur cycle occurring in the wastewater biofilm and was primarily responsible for the oxidation of H2S and S0 to SO42− under oxic conditions.  相似文献   

7.
Respiration of arsenate and selenate by hyperthermophilic archaea   总被引:1,自引:0,他引:1  
A novel, strictly anaerobic, hyperthermophilic, facultative organotrophic archaeon was isolated from a hot spring at Pisciarelli Solfatara, Naples, Italy. The rod-shaped cells grew chemolithoautotrophically with carbon dioxide as carbon source, hydrogen as electron donor and arsenate, thiosulfate or elemental sulfur as electron acceptor. H2S was formed from sulfur or thiosulfate, arsenite from arsenate. Organotrophically, the new isolate grew optimally in the presence of an inorganic electron acceptor like sulfur, selenate or arsenate. Cultures, grown on arsenate and thiosulfate or arsenate and L-cysteine, precipitated realgar (As2S2). During growth on selenate, elemental selenium was produced. The G+C content of the DNA was 58.3 mol%. Due to 16S rRNA gene sequence analysis combined with physiological and morphological criteria, the new isolate belongs to the Thermoproteales order. It represents a new species within the genus Pyrobaculum, the type species of which we name Pyrobaculum arsenaticum (type strain PZ6*, DSM 13514, ATCC 700994). Comparative studies with different Pyrobaculum-species showed, that Pyrobaculum aerophilum was also able to grow organotrophically under anaerobic culture conditions in the presence of arsenate, selenate and selenite. During growth on selenite, elemental selenium was formed as final product. In contrast to P. arsenaticum, P. aerophilum could use selenate or arsenate for lithoautotrophic growth with carbon dioxide and hydrogen.  相似文献   

8.
Generally speaking, a much higher concentration of biocide is needed to treat biofilms compared to the dosage used to for planktonic bacteria. With increasing restrictions of environmental regulations and safety concerns on large-scale biocide uses such as oil field applications, it is highly desirable to make more effective use of biocides. In this paper a green biocide enhancer ethylenediaminedisuccinate (EDDS) that is a biodegradable chelator, was found to enhance the efficacy of glutaraldehyde in its treatment of sulfate-reducing bacteria (SRB) biofilms. Experiments were carried out in 100 ml anaerobic vials with carbon steel coupons. The ATCC 14563 strain of Desulfovibrio desulfuricans was used. Biofilms on coupon surfaces were visualized using scanning electron microscopy (SEM). Experimental results showed that EDDS reduced the glutaraldehyde dosages considerably in the inhibition of SRB biofilm establishment and the treatment of established biofilms on carbon steel coupon surfaces.  相似文献   

9.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2, NO3, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 μm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 μm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

10.
A biofilm-selected strain of a Desulfomicrobium sp. removed selenate from solution to sub-micromolar concentrations during growth on lactate (or hydrogen) and sulfate. Under sulfate-limited growth conditions, selenium was enzymatically reduced to selenide. Under excess sulfate conditions, selenate removal was primarily by enzymatic reduction to elemental selenium. Sequestration by biofilms was greater under the latter condition. Experiments with washed cell suspensions showed that high sulfate concentrations inhibited cell-specific selenate reduction, but when growing cells were exposed to selenate, the biomass increase achieved during incubations with abundant sulfate resulted in more rapid selenate removal. The addition of small amounts of sulfite, or thiosulfate, ameliorated this inhibition. Nitrate also inhibited selenate reduction in washed cell suspensions, apparently due to a general oxidizing effect. These results suggest that where biofilm-based sulfate-reducing bacteria (SRB) bioreactors are considered for the treatment of mixed metalliferous wastes that contain selenium oxyanions, adequate selenate removal should be achievable under a range of environmental conditions. The form and fate of the precipitated product will, however, be influenced by the dominant reduction pathway, which is controlled by environmental variables.  相似文献   

11.
还原亚硒酸盐产生红色单质硒光合细菌菌株的筛选与鉴定   总被引:4,自引:0,他引:4  
从实验室保藏的光合细菌中筛选出一株对亚硒酸钠还原效率较高的菌株S3,其亚硒酸钠还原产物通过透射电子显微镜及EDX(Electron-Dispersive X-ray)分析确定为红色单质硒。菌株S3的形态学特征、生理生化特征及光合色素扫描结果与固氮红细菌(Rhodobacter azotoformans)的特征基本一致;16S rDNA序列(GenBank登录号为DQ402051)在系统发育树中与固氮红细菌同属一个类群,序列同源性为99%。根据上述结果将菌株S3鉴定为固氮红细菌。初步研究了该菌株还原亚硒酸钠的特性,首次报道固氮红细菌具有还原亚硒酸盐产生红色单质硒的能力,为今后利用微生物方法治理环境中硒污染、利用微生物方法获得活性红色单质硒以及对微生物还原亚硒酸盐产生红色单质硒的机理研究奠定了良好的基础。  相似文献   

12.
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.  相似文献   

13.
In order to develop a biological process for removal of selenium from industrial wastewater, Bacillus sp. strain SF-1 was isolated from selenium-contaminated sediment. The bacterium reduces selenate to selenite and subsequently to nontoxic insoluble elemental selenium using lactate as an electron donor and selenate as an electron acceptor in an anaerobic condition. Elemental selenium transformed from soluble selenium was deposited both inside and outside of the cells. Since the selenate reduction rate of the strain SF-1 was higher than the selenite reduction rate, selenite was transiently accumulated. In an experiment of the repeated soluble selenium reduction by strain SF-1, 0.5 mM of selenate was sequentially treatable with a cycle of one day. Thus, our sequential system for removal of soluble selenium is very useful.  相似文献   

14.
The biological reduction of selenium oxyanions is capable of reducing both selenate and selenite to insoluble elemental selenium. In this process, however, bacteria inevitably require expensive chemicals such as yeast extract in almost all cases. Therefore, the reduction of selenium oxyanions with inexpensive alcohol would be more practical. A Pseudomonas sp. strain 4C‐C isolated from a sludge in a wastewater treatment facility was able to reduce selenate to selenite using ethanol as an electron donor for its anaerobic respiration, but could not reduce selenite to elemental selenium. Paracoccus denitrificans JCM‐6892, on the other hand, was observed to be able to reduce selenite to elemental selenium in the presence of ethanol, but not selenate to selenite. Therefore, a mixture containing a suspension of Pseudomonas sp. strain 4C‐C and P. denitrificans JCM‐6892 cells allowed selenate to be reduced to insoluble elemental selenium via selenite in the presence of ethanol and was also capable of reducing nitrate to nitrogen gas. Aiming at simplicity of the recovery process of insoluble elemental selenium, a polymeric gel immobilized mixture of the two bacterial strains was examined using ethanol as an electron donor. The immobilized mixture could therefore reduce not only selenate to elemental selenium, but also nitrate to nitrogen gas in a single step. The gel that immobilized the microbial mixture changed its color during the process to bright red and no red elemental selenium was left in the wastewater. This indicates that the reduced elemental selenium was completely absorbed in the gel. This simple bacterial combination would therefore be effective in the presence of ethanol to reduce selenium oxyanions in various wastewaters containing selenium and the other oxyanions.  相似文献   

15.
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.  相似文献   

16.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

17.
硫酸盐还原菌(sulfate-reducing bacteria,SRB)广泛分布于高温、高压及高盐的石油油藏中,在油藏硫循环中起主导作用。SRB能在油藏生物膜内生长,有微量低分子有机酸时利用硫酸盐为电子受体并将其还原成硫化氢。硫化氢会腐蚀管道,导致原油泄露等其他安全问题,每年造成的经济损失超过7 000亿元。本文首先总结了油藏生物膜内微生物菌群多样性,分析了生物膜内SRB及其相关菌群的协同腐蚀机理;然后讨论了高温油藏SRB介导的硫氮氢生物地球化学循环过程、胞外电子传递机制及其腐蚀作用,并通过几个高温油藏SRB生物膜内腐蚀的现场案例进一步阐明了SRB的腐蚀机制。在此基础上,提出了应对高温油藏生物膜内SRB腐蚀的生物纳米防治策略,这为高温油藏管道防腐提供了新思路。  相似文献   

18.
The utilization of high strength carbon steels in oil and gas transportation systems has recently increased. This work investigates microbiologically influenced corrosion (MIC) of API 5L X80 linepipe steel by sulfate reducing bacteria (SRB). The biofilm and pit morphology that developed with time were characterized with field emission scanning electron microscopy (FESEM). In addition, electrochemical impedance spectroscopy (EIS), polarization resistance (Rp) and open circuit potential (OCP) were used to analyze the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and solution interfaces. The results confirmed that the extensive localized corrosion activity of SRB is due to a formed biofilm and a porous iron sulfide layer on the metal surface. Energy Dispersive Spectroscopy (EDS) revealed the presence of different sulfide and oxide constituents in the corrosion products for the system exposed to SRB.  相似文献   

19.
Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.  相似文献   

20.
Desulfovibrio vulgaris Hildenborough is a Gram-negative sulfate-reducing bacterium (SRB), and the physiology of SRBs can impact many anaerobic environments including radionuclide waste sites, oil reservoirs and metal pipelines. In an attempt to understand D. vulgaris as a population that can adhere to surfaces, D. vulgaris cultures were grown in a defined medium and analysed for carbohydrate production, motility and biofilm formation. Desulfovibrio vulgaris wild-type cells had increasing amounts of carbohydrate into stationary phase and approximately half of the carbohydrate remained internal. In comparison, a mutant that lacked the 200 kb megaplasmid, strain DeltaMP, produced less carbohydrate and the majority of carbohydrate remained internal of the cell proper. To assess the possibility of carbohydrate re-allocation, biofilm formation was investigated. Wild-type cells produced approximately threefold more biofilm on glass slides compared with DeltaMP; however, wild-type biofilm did not contain significant levels of exopolysaccharide. In addition, stains specific for extracellular carbohydrate did not reveal polysaccharide material within the biofilm. Desulfovibrio vulgaris wild-type biofilms contained long filaments as observed with scanning electron microscopy (SEM), and the biofilm-deficient DeltaMP strain was also deficient in motility. Biofilms grown directly on silica oxide transmission electron microscopy (TEM) grids did not contain significant levels of an exopolysaccharide matrix when viewed with TEM and SEM, and samples stained with ammonium molybdate also showed long filaments that resembled flagella. Biofilms subjected to protease treatments were degraded, and different proteases that were added at the time of inoculation inhibited biofilm formation. The data indicated that D. vulgaris did not produce an extensive exopolysaccharide matrix, used protein filaments to form biofilm between cells and silica oxide surfaces, and the filaments appeared to be flagella. It is likely that D. vulgaris used flagella for more than a means of locomotion to a surface, but also used flagella, or modified flagella, to establish and/or maintain biofilm structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号