首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied whether therapeutic doses of cyclosporin A (CsA) modify the effects of nutrient and non-nutrient stimuli on pHi, in the insulin-secreting beta-cell line HIT-T15. Glucose caused a transient acidification, followed by alkalinization. CsA failed to block this alkalinization. PMA elicited a gradual alkalinization by a protein kinase C mediated mechanism which is not inhibited by CsA. The depolarization with high K+ was associated with a rise in pHi. CsA was able to completely block this increase in pHi. Ionomycin induced a rapid cytosolic alkalinization partially inhibited by CsA. We conclude that in HIT-T15 cells, therapeutical doses of CsA inhibit the Ca(2+)-dependent pathway of Na+/H+ antiport activation but not protein kinase C activation of this exchanger.  相似文献   

2.
Digital image processing of the pH-sensitive dye BCECF was used to examine the effects of high [K] media on cytoplasmic pH (pHi) of individual cells within isolated rabbit gastric glands. When cells were acidified to pHi 6.5 from the resting pHi of 7.2-7.3 and then exposed to solution containing 77 mM K plus amiloride (to block Na/H exchange), recovery to pHi 7.0 was observed. This K-induced alkalinization occurred in all cell types of the gland, including cells within antral glands that were devoid of parietal cells (PC). This process was independent of extracellular Na and Cl and was unaffected by: 5 mM Ba or 200 microM bumetanide, or acute treatment with either 500 microM ouabain or 100 microM cimetidine, histamine or carbachol. SCH28080, which inhibits the PC H/K-ATPase when used in the low microM range of concentrations, blocked the K effect on pHi at 100 microM but was ineffective at 1 microM. A similar pHi recovery was also stimulated by Li, Cs (both 72 mM), and Tl (10 mM), in the order Li greater than K greater than Cs greater than Tl (all in the presence of amiloride), and these alkalinizations were also blocked by 100 microM SCH28080. Parallel experiments were performed to test the effect of these ions on 14[C]-aminopyrine accumulation, an index of acid secretion by the H/K-ATPase at the lumenal membrane of the PC. There was no correlation between the rates of cation-induced pHi recovery from an acid load and H secretion as measured by the accumulation of aminopyrine. We conclude that the K- (and Cs- and Li-) dependent pHi recovery is mediated by a novel cation/H exchange mechanism that is distinct from the PC H/K-ATPase.  相似文献   

3.
Cyclosporin A (CsA) is a widely used immunosuppressant. Reports on the effect of CsA on hyperpigmentation in patients appear inconsistent, and the effect of CsA on skin pigment cells (melanocytes) in vitro is unknown. We examined the effect of CsA on human melanocyte proliferation and melanogenesis in vitro. Melanocyte proliferation was dose-dependently inhibited by 0.1-10 microM CsA, with no effect on cell viability. Melanocytes incubated with 10 microM CsA for 6 days showed decreased pigmentation and tyrosinase activity. Western blot analysis using an anti-tyrosinase antibody revealed that CsA (0.1-10 microM) decreased tyrosinase protein levels in a dose-dependent manner. Northern blot analysis showed similar effects on tyrosinase mRNA levels. These effects of CsA on melanogenesis in vitro are not consistent with suggestions that systemic CsA therapy causes patient skin hyperpigmentation.  相似文献   

4.
We have examined the effects of hydrocortisone on growth and Na+/H+ exchange in cultured rat aortic vascular smooth muscle cells (VSMC). Hydrocortisone (2 microM) treatment of growth-arrested VSMC significantly decreased VSMC growth in response to 10% calf serum assayed by 3H-thymidine incorporation and cell number at confluence. This effect was associated with the appearance of an altered cell phenotype characterized by large, flat VSMC that did not form typical "hillocks." Na+/H+ exchange was also altered in hydrocortisone-treated cells assayed by dimethylamiloride-sensitive 22Na+ influx into acid-loaded cells or by intracellular pH (pHi) change using the fluorescent dye BCECF. Resting pHi was 7.25 +/- 0.04 and 7.15 +/- 0.05 in control and hydrocortisone-treated cells, respectively (0.1 less than P less than 0.05). Following intracellular acidification in the absence of external Na+, pHi recovery upon addition of Na+ was increased 89% in hydrocortisone-treated cells relative to control. This was due to an increase in the Vmax for the Na+/H+ exchanger from 17.5 +/- 2.4 to 25.9 +/- 2.0 nmol Na+/mg protein x min (P less than 0.01) without a significant change in Km. Treatment of VSMC with actinomycin D (1 microgram/ml) or cycloheximide (10 microM) completely inhibited the hydrocortisone-mediated increase in Na+/H+ exchange, indicating a requirement for both RNA and protein synthesis. Because hydrocortisone altered the Vmax for Na+/H+ exchange, in contrast to agonists such as serum or angiotensin II which alter the Km for intracellular H+ or extracellular Na+, respectively, we studied the effect of hydrocortisone on activation of Na+/H+ exchange by these agonists. In cells maintained at physiological pHi (7.2), the initial rate (2 min) of angiotensin II-stimulated alkalinization was increased 66 +/- 39% in hydrocortisone-treated compared with control cells. Hydrocortisone caused no change in angiotensin II-stimulated phospholipase C activity assayed by measurement of changes in intracellular Ca2+ or diacylglycerol formation. However, angiotensin II and serum stimulated only small increases in Na+/H+ exchange in acid-loaded (pHi = 6.8) hydrocortisone-treated cells. These findings suggest that hydrocortisone-mediated increases in VSMC Na+/H+ exchange occur in association with a nonproliferating phenotype that has altered regulation of Na+/H+ exchange activation. We propose that hydrocortisone-mediated growth inhibition may be a useful model for studying the role of Na+/H+ exchange in cell growth responsiveness.  相似文献   

5.
In this study we aimed to determine the concentration range of cyclosporin A (CsA) which was effective in protecting against reoxygenation injury in isolated cardiomyocytes, and its effects on intramitochondrial free calcium levels ([Ca2+]m). We also determined whether a high [CsA] had any deleterious effect on normal myocyte function. Isolated adult rat ventricular myocytes were placed in a chamber on the stage of a fluorescence microscope for induction of hypoxia. [Ca2+]m was determined from indo-1/am loaded cells where the cytosolic fluorescence signal had been quenched by superfusion with Mn2+. Cell length was measured using an edge-tracking device. Upon induction of hypoxia, control cells underwent rigor-contracture in 37 +/- 1 min (n = 99) (T1); CsA had no effect on T1. The percentage of control cells which recovered upon reoxygenation depended on the time spent in rigor (T2). With a T2 of 21-30 min, only 36% of control cells recovered compared with 90% and 78% of cells treated with 0.2 microM and 1 microM CsA respectively. After 40 min in rigor, [Ca2+]m was 280 +/- 60 nM in control-recovered cells (50% of cells) and 543 +/- 172 nM and 153 +/- 26 nM in cells treated with 0.2 and 1 microM CsA, respectively (all CsA treated cells recovered). In normoxic studies, CsA had no effect on cell contractility or [Ca2+]m upon rapid pacing, even in presence of an elevated external [Ca2+]. In conclusion, both low and high [CsA] protected against reoxygenation injury to cardiomyocytes despite having opposing effects on [Ca2+]m, suggesting more than one mechanism of action. CsA had no effect on either cell contractility or [Ca2+]m in normoxic cells.  相似文献   

6.
The role of the KefB and KefC potassium efflux systems in protecting Escherichia coli cells against the toxic effects of the electrophile N-ethylmaleimide has been investigated. Activation of KefB and KefC aids the survival of cells exposed to high concentrations (> 100 microM) of NEM. High potassium concentrations reduce the protection afforded by activation of KefB and KefC, but the possession of these systems is still important under these conditions. The Kdp system, which confers sensitivity to the electrophile methylglyoxal, did not affect the survival of cells exposed to NEM. Survival is correlated with the reduction of the cytoplasmic pH upon activation of the channels. In particular, the kinetics of the intracellular pH (pHi) change are crucial to the retention of viability of cells exposed to NEM; slow acidification does not protect cells as effectively as rapid lowering of pHi. Cells treated with low levels of NEM (10 microM) recover faster if they activate KefB and KefC, and this correlates with changes in pHi. The pHi does not significantly alter the rate of NEM metabolism. The possible mechanisms by which protection against the electrophile is mediated are discussed.  相似文献   

7.
Ag stimulation of rat basophilic leukemia (RBL-2H3) cells results in hydrolysis of inositol phospholipids, a transient increase in concentration of cytosol Ca2+ [( Ca2+]i), a gradual increase in cytosolic pH (pHi) and the activation of protein kinase C. To determine whether all these changes serve as signals for secretion, studies were conducted with cells permeabilized with streptolysin O in which pHi and [Ca2+]i could be varied independently of each other and enzyme activities could be manipulated. At resting pHi (approximately 7.0) and [Ca2+]i (0.1 microM), the permeabilized cells showed little secretory response to Ag. At resting pHi, elevated levels of Ca2+ (0.33 microM) were required for maximal secretory response to Ag. At a pHi of 7.4, however, 0.1 microM [Ca2+]i was sufficient to sustain near maximal responses to Ag. Therefore, a small increase of [Ca2+]i to 0.33 microM was required to initiate secretion, but once the pHi was elevated secretion could be sustained at near basal levels of [Ca2+]i. Since elevating the [Ca2+]i and pHi, by themselves promoted little secretion, another potentiating signal must have been generated by antigen stimulation. This signal was possibly transduced via hydrolysis of inositol phospholipids and protein kinase C. Even with an elevated [Ca2+]i (0.33 microM) the hydrolysis of the phospholipids and secretion stimulated by Ag were inhibited by guanosine 5'(2-O-thio)diphosphate and neomycin. Furthermore, both protein-kinase C and the secretory response to Ag were lost after permeabilized cells were washed but both were retained if cells were exposed to PMA before permeabilization.  相似文献   

8.
Using pH-sensitive microelectrodes to measure intracellular pH (pHi) in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum, we have found that when cells are acid-loaded by pretreatment with NH+4 in a nominally HCO3--free Ringer, pHi spontaneously recovers with an exponential time course. This pHi recovery, which is indicative of active (i.e., uphill) transport, is blocked by removal of Na+ from both the luminal and basolateral (i.e., bath) solutions. Re-addition of Na+ to either the lumen or the bath results in a full pHi recovery, but at a lower-than-normal rate; the maximal rate is achieved only with Na+ in both solutions. The diuretic amiloride reversibly inhibits the pHi recovery when present on either the luminal or basolateral sides, and has its maximal effect when present in both solutions. The pHi recovery is insensitive to stilbene derivatives and to Cl- removal. A transient rise of intracellular Na+ activity accompanies the pHi recovery; there is no change of intracellular Cl- activity. These data suggest that these proximal tubule cells have Na-H exchangers in both the luminal and basolateral membranes.  相似文献   

9.
Cyclosporin A (CsA) is a potent immunosuppressive agent, and can cause severe adverse effects including nephrotoxicity partly due to generation of reactive oxygen species (ROS). Glucocorticoids, which are widely used in combination with CsA, have been shown to reduce oxidative injuries in various cells, but its mechanism is not understood well. To investigate the effects of prednisolone (Pd) on CsA-induced cellular damage and ROS generation in Madin-Darby canine kidney (MDCK) tubular epithelial cells, cells were treated with CsA, CsA plus Pd, or CsA plus vitamin E. Pretreatment with Pd protected cells from CsA-induced apoptosis but not from G(0)/G(1) cell cycle arrest even at its maximal protective concentration (30 microM), whereas vitamin E almost completely inhibited both CsA-induced apoptosis and cell cycle arrest at 1 microM concentration. In addition, Pd reduced the amount of CsA-induced ROS and showed partly restored catalase which was down-regulated by 10 microM CsA at both the mRNA and protein levels. Vitamin E completely abolished CsA-induced ROS generation and catalase attenuation at 10 microM concentration. Finally, the effects of 1 microM vitamin E on CsA-induced ROS and apoptosis as well as cell cycle arrest were similar to those of 30 microM Pd. We conclude that, in MDCK cells, Pd protects against CsA-induced cytotoxicity by suppressing ROS generation, although its protective effect is weaker than that of vitamin E.  相似文献   

10.
Concomitant administration of cyclosporin A (CsA) with Ag has been shown to augment the production of Ag-specific IgE in vivo. We demonstrate that addition of CsA also markedly potentiated Ag-specific IgE in vitro. Low doses of CsA (3 and 10 ng/ml) added at the time of culture initiation selectively enhanced Ag-specific IgE but not IgA or IgG1 production, whereas higher doses (30 ng/ml) suppressed production of all the isotypes. Augmented IgE production was found to correlate with enhanced production of IL-4 and diminished production of IFN-gamma. Delayed addition (after 2 days) of low doses of CsA to Ag-stimulated cultures did not potentiate IgE production, even though CsA differentially affected levels of IL-4 and IFN-gamma. CsA enhanced Ag-mediated cognate T/B interaction was not affected by neutralizing doses of anti-IL-4, suggesting Ag-mediated lymphocytic "synapses" may be inaccessible to anti-IL-4. The effect of CsA on Ag presentation was determined by pulsing peritoneal exudate cells, spleen cells, or primed B cells with Ag and low doses of CsA before incubation with primed splenocytes. Enhanced Ag-specific IgE responses were detected with no effect on IL-4 or IFN-gamma levels. Thus, our study indicates that CsA potentiation of Ag-specific IgE response is due to cumulative action of CsA on two independent pathways: first, CsA differentially modulates IL-4 and IFN-gamma levels during the early phase of cognate Th2/B cell interaction; and second, CsA directly affects APC and IgE isotype-specific amplifying cellular components without apparently affecting the secretory levels of IL-4 and IFN-gamma. Dual mechanisms of CsA-potentiated IgE production are consistent with the hypothesis of two-tiered T cell regulation of Ag-specific IgE responses.  相似文献   

11.
The effect of cyclosporin A (CsA) on the production of gamma interferon (IFN gamma) versus IFN alpha/beta was studied using mouse and human lymphocytes and fibroblasts. Spleen cells from C57Bl/6 mice produced low but significant levels (40-60 U/ml) of IFN gamma after 2 to 3 days of culture with irradiated DBA spleen cells. The addition of CsA at concentrations as low as 0.1 microgram/ml completely inhibited (less than 10 U/ml) IFN gamma production in these cultures. High levels of IFN gamma (170-1200 U/ml) were produced when either C57Bl/6 spleen cells or Ficoll-Hypaque-purified human peripheral blood lymphocytes (PBL) were cultured with the T-cell mitogen staphylococcal enterotoxin A (SEA). The addition of CsA (0.1 microgram/ml) to these cultures also completely inhibited (less than 10 U/ml) IFN gamma production. This inhibition was shown not to be due to a change in the kinetics of IFN gamma production or to a change in the amount of SEA required for stimulation. IFN gamma production in SEA-stimulated mouse spleen cells was inhibited at 3 days of culture even when CsA was added at 24 or 48 hr postculture initiation. Thus, CsA inhibits IFN gamma production even when early events associated with lymphocyte activation have been allowed to take place. In contrast to IFN gamma production, IFN alpha/beta production by Newcastle disease virus (NDV)-infected mouse and human lymphocytes or fibroblasts was not inhibited by the addition of CsA (1 microgram/ml). CsA also did not block the action of IFN gamma or IFN alpha/beta since addition of CsA (1 microgram/ml) to reference IFN standards had no effect on their antiviral activity. Thus, CsA inhibits the production of IFN gamma by T cells but appears to have no effect on the production of IFN alpha/beta by virus-infected cells or on the antiviral action of already produced IFN gamma and IFN alpha/beta.  相似文献   

12.
A T Davenport  C A Hodson 《Life sciences》1992,50(14):1001-1006
The effect of cyclosporin A (CsA) treatment on LH and prolactin was investigated. Chronic daily administration of an immunosuppressive dose of CsA (1.5 mg/100g bw) increased serum LH concentrations and pituitary gland LH content. CsA treatment also resulted in increased serum testosterone. Immunosuppressive doses of CsA had no effect on serum prolactin or pituitary gland prolactin content. Acute administration of low doses of 0.12, 1.2, 12 and 120ug CsA/100g bw had no effect on serum LH or prolactin. These results suggest that administration of immunosuppressive doses of CsA alters serum and pituitary LH and serum testosterone but not prolactin.  相似文献   

13.
Cyclosporin A (CsA) is a fungus-derived cyclic undecapeptide with potent immunosuppressive activity. Its analog, cyclosporin H (CsH), lacks immunosuppressive function but can act as an antagonist for the human formyl peptide receptor (FPR). More recent studies have shown that CsA also inhibits fMLF-induced degranulation in differentiated HL-60 promyelocytic leukemia cells. However, it is unclear whether CsA interferes with ligand-receptor interaction, G protein activation, or other downstream signaling events. In this study we used human neutrophils, differentiated HL-60 cells, and rat basophilic leukemia (RBL)-2H3 cells expressing human FPR (RBL-FPR) to identify the action site of CsA. In functional assays, CsA inhibited fMLF-stimulated degranulation, chemotaxis, calcium mobilization, and phosphorylation of the MAPKs ERK 1/2 and the serine/threonine protein kinase Akt. CsA also blocked Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm)-induced functions in RBL-FPR cells. Concentrations for half-maximal inhibition with CsA are generally 6- to 50-fold higher than that of CsH. CsA was compared with another immunosuppressant, ascomycin, relative to the inhibitory effects on FPR-mediated chemotaxis, calcium mobilization, and degranulation. In these experiments, ascomycin produced no inhibitory effects at low micromolar concentrations (1-4 microM), whereas the inhibitory effects of CsA were prominent at comparable concentrations. Finally, CsA dose-dependently inhibited the uptake of fNle-Leu-Phe-Nle-Tyr-Lys-fluoresceine and [3H]fMLF or [125I]WKYMVm binding to FPR. However, CsA and CsH did not show any obvious inhibitory effect on FPR-like 1-mediated cellular functions. These results demonstrate that CsA is a selective antagonist of FPR and that its inhibition of fMLF-stimulated leukocyte activation is at the level of cognate ligand binding.  相似文献   

14.
The effect of extracellular Na+ removal and replacement with other cations on receptor-mediated arachidonate release in platelets was studied to investigate the role of Na+/H+ exchange in this process. Replacement with choline+, K+, N-methylglucamine+ (which abolished the thrombin-induced pHi rise) or Li+ (which allowed a normal thrombin-induced pHi rise) significantly decreased arachidonate release in response to all concentrations (threshold to supra-maximal) of thrombin and collagen. This inhibition was not reversed by NH4Cl (10 mM) addition, which raised the pHi in the absence of Na+, but, on the contrary, NH4Cl addition further decreased the extent of thrombin- and collagen-induced arachidonate release, as well as decreasing 'weak'-agonist (ADP, adrenaline)-induced release and granule secretion in platelet-rich plasma. No detectable pHi rises were seen with collagen (1-20 micrograms/ml) and ADP (10 microM) in bis-(carboxyethyl)carboxyfluorescein-loaded platelets. Inhibition of thrombin-induced pHi rises was seen with 0.5-5 microM-5-NN-ethylisopropylamiloride (EIPA), but at these concentrations EIPA had little effect on thrombin-induced arachidonate release. At higher concentrations such as those used in previous studies (20-50 microM), EIPA inhibited aggregation/release induced by collagen and ADP in Na+ buffer as well as in choline+ buffer (where there was no detectable exchanger activity), suggesting that these concentrations of EIPA exert 'non-specific' effects at the membrane level. The results suggest that (i) Na+/H+ exchange and pHi elevations are not only necessary, but are probably inhibitory, to receptor-mediated arachidonate release in platelets, (ii) inhibition of receptor-mediated release in the absence of Na+ is most likely due to the absent Na+ ion itself, and (iii) caution should be exercised in the use of compounds such as EIPA, which, apart from inhibiting the Na+/H+ exchanger, have other undesirable and misleading effects in platelets.  相似文献   

15.
The changes of the intracellular pH (pHi) of cultured bovine aortic endothelial cells were fluorometrically monitored using 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). A biphasic pHi change was observed by addition of ATP: an initial acidification followed by an alkalinization of about 0.2 pH unit above the resting level of pHi 7.23. The alkalinization was dependent on [Na+]o and [H+]o, and was inhibited by 5-(N,N-hexamethylene)amiloride, indicating that the alkalinization is mediated by the Na+/H+ exchanger. The 50% effective concentration of ATP was about 1.4 microM. ADP similarly induced pHi changes, whereas AMP and adenosine were inactive. The pHi changes induced by ATP were dependent on the extracellular Ca2+, and the addition of calcium ionophore A23187 induced similar pHi changes. The results indicate that ATP activates the Na+/H+ exchanger in cultured bovine aortic endothelial cells and the activation is mediated by the P2-purinergic receptor and is dependent on the extracellular Ca2+.  相似文献   

16.
We have examined the effects of cyclosporine A (CsA) on a number of CTL effector functions. CsA partially inhibited the CTL-mediated lysis of Ag-bearing target cells. Both target cell- and anti-TCR mAb-induced granule exocytosis were markedly inhibited by CsA. In addition, marked inhibition of PMA and calcium ionophore (A23187) induced granule exocytosis was produced by CsA suggesting that the inhibitory effects of CsA on granule exocytosis involve biochemical events after protein kinase C activation and increases in intracellular free Ca2+. CsA had no inhibitory effects on TCR-mediated phosphatidylinositol metabolism. The inhibitory effects of CsA were not mediated by the cAMP-dependent protein kinase inhibitory pathway and no effect of CsA on the Ca2+-induced binding of calmodulin to calmodulin-binding proteins could be demonstrated. CsA was also a potent inhibitor of IgE receptor-mediated exocytosis in rat basophil leukemia cells. CsA had no effect on receptor-mediated phosphatidylinositol hydrolysis; 400 ng/ml CsA resulted in a 90% inhibition of serotonin release but had no effect on phosphatidylinositol hydrolysis. These results indicate that CsA may inhibit some common event in Ca2+-dependent secretory cells. Taken together, these results suggest that CsA does not inhibit signal transduction but rather interferes with the biochemical events in the later stages of Ca2+-dependent reactions that follow the binding of calmodulin to cytoskeletal or cytoplasmic calmodulin binding proteins.  相似文献   

17.
Dubus I  Sena S  Labouyrie JP  Bonnet J  Combe C 《Life sciences》2005,77(26):3366-3374
Nephrotoxicity is a major side-effect of cyclosporin A (CsA), which induces a vasoconstrictive response in vascular smooth muscle and mesangial cells. Mycophenolic acid (MPA) is used in combination with low-dose CsA to reduce nephrotoxicity. We previously demonstrated that MPA affected mesangial cell contractile response to angiotensin II or KCl. Aims of the present study were to evaluate if MPA can prevent CsA-induced contraction of human mesangial and aortic smooth muscle cells (ASMC). Using a morphoquantitative approach, we evidenced that pretreatment with MPA (1 microM) prevented the reduction of cell area induced by CsA within 30 min in both cell types. We then compared the expression of three main cytoskeleton proteins: tubulin, alpha-smooth actin (SMA) and basic calponin, in ASMC and in mesangial cells treated with MPA and/or CsA. CsA alone did not significantly change the expression level of these proteins neither in mesangial cells nor in ASMC. MPA decreased the expression level of tubulin in both mesangial cells and ASMC. Surprisingly, MPA, which stimulated SMA and calponin expression in mesangial cells, exerted an inhibitory effect on both contractile protein expression in ASMC. In conclusion, our results evidenced opposite effects of MPA on calponin and SMA protein expression in ASMC and in mesangial cells, despite similar antiproliferative properties, suggesting that sarcomeric protein expression is controlled by different intracellular mechanisms in mesangial and smooth muscle cells. However, MPA interferes in both cell types with the constrictive properties CsA, which may partially explain the protective effects of MPA against CsA nephrotoxicity.  相似文献   

18.
The mechanism whereby Cyclosporin A (CsA) inhibits secondary mixed lymphocyte responses was assessed. CsA added to secondary MLR cultures inhibited proliferation and induction of cytolytic lymphocyte activity. This inhibition was found to be associated with the inhibition of T lymphocyte stimulating growth factor(s) (TCGF) production in the supernatants of secondary MLR cultures. As little as 1.0 micrograms/ml of CsA added to secondary MLR cultures resulted in no measurable TCGF activity. In contrast, moderate doses of CsA (1.0, 2.5 micrograms/ml), which completely inhibited the secondary MLR response to alloantigen, did not inhibit the proliferative and CML response of alloantigen-primed lymphocytes to these stimulating growth factors. Even at high doses of CsA (20 micrograms/ml), substantial levels of proliferation (50% of control response) and CML induction (60% of control response) were observed when the primed cells were exposed to secondary MLR supernatants containing TCGF activity. It was concluded that inhibition of secondary mixed lymphocyte responses by CsA may be due in part to the inhibition of TCGF production rather than the inhibition of the effect of TCGF on mature cytotoxic T lymphocytes.  相似文献   

19.
Osteoclasts resorb bone by pumping of H+ into a compartment between the cell and the bone surface. Intracellular pH (pHi) homeostasis requires that this acid extrusion, mediated by a vacuolar-type H+ ATPase, be complemented by other acid-base transporters. We investigated acid- extrusion mechanisms of single, freshly isolated, neonatal rat osteoclasts. Cells adherent to glass coverslips were studied in the nominal absence of CO2/HCO3-, using the pH-sensitive dye BCECF and a digital imaging system. Initial pHi averaged 7.31 and was uniform throughout individual cells. Intrinsic buffering power (beta 1) decreased curvilinearly from approximately 25 mM at pHi = 6.4 to approximately 6.0 mM at pHi = 7.4. In all polygonally shaped osteoclasts, and approximately 60% of round osteoclasts (approximately 20% of total), pHi recovery from acid loads was mediated exclusively by Na-H exchange. In these pattern-1 cells, pHi recovery was 95% complete within 200 s, and was blocked by removing Na+, or by applying 1 mM amiloride, 50 microM ethylisopropylamiloride (EIPA), or 50 microM hexamethyleneamiloride (HMA). The apparent K1/2 for HMA ([Na+]o = 150 mM) was 49 nM, and the apparent K1/2 for Na+ was 45 mM. Na-H exchange, corrected for amiloride-insensitive fluxes, was half maximal at pHi 6.73, with an apparent Hill coefficient for intracellular H+ of 2.9. Maximal Na-H exchange averaged 741 microM/s. In the remaining approximately 40% of round osteoclasts (pattern-2 cells), pHi recovery from acid loads was brisk even in the absence of Na+ or presence of amiloride. This Na(+)-independent pHi recovery was blocked by 7-chloro- 4-nitrobenz-2-oxa-1,3-diazol (NBD-Cl), a vacuolar-type H+ pump inhibitor. Corrected for NBD-Cl insensitive fluxes, H+ pump fluxes decreased approximately linearly from 96 at pHi 6.8 to 11 microM/s at pHi 7.45. In approximately 45% of pattern-2 cells, Na+ readdition elicited a further pHi recovery, suggesting that H+ pumps and Na-H exchangers can exist simultaneously. We conclude that, under the conditions of our study, most neonatal rat osteoclasts express Na-H exchangers that are probably of the ubiquitous basolateral subtype. Some cells express vacuolar-type H+ pumps in their plasma membrane, as do active osteoclasts in situ.  相似文献   

20.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号