首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human B lymphoblast lines severely deficient in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) were selected for resistance to 6-thioguanine from cloned normal and phosphoribosylpyrophosphate (PP-Rib-P) synthetase-superactive cell lines and were compared with their respective parental cell lines with regard to growth and PP-Rib-P and purine nucleotide metabolism. During blockade of purine synthesis de novo with 6-methylthioinosine or aminopterin, inhibition of growth of all HGPRT-deficient cell lines was refractory to addition of Ade at concentrations which restored substantial growth to parental cell lines. Ade-resistant inhibition of growth of parental lines by 6-methylthioinosine, however, occurred during Ado deaminase inhibition. Insufficient generation of IMP (and ultimately guanylates) to support growth of lymphoblasts lacking HGPRT activity and blocked in purine synthesis de novo best explained these findings, implying that a major route of interconversion of AMP to IMP involves the reaction sequence: AMP----Ado----Ino----Hyp----IMP. PP-Rib-P generation and purine nucleoside triphosphate pools were unchanged by introduction of HGPRT deficiency into normal lymphoblast lines, in agreement with the view that accelerated purine synthesis de novo in this deficiency results from increased availability of PP-Rib-P for the pathway. Cell lines with dual enzyme defects did not differ from PP-Rib-P synthetase-superactive parental lines in rates of PP-Rib-P and purine synthesis despite 5-6-fold increases in PP-Rib-P concentrations, excretion of nearly 50% of newly synthesized purines, and diminished GTP concentrations. Fixed rates of purine synthesis de novo in PP-Rib-P synthetase-superactive cells appeared to reflect saturation of the rate-limiting amidophosphoribosyltransferase reaction for PP-Rib-P. In combination with accelerated purine excretion, increased channeling of newly formed purines into adenylates, and impaired conversion of AMP to IMP, fixed rates of purine synthesis de novo may condition cell lines with defects in HGPRT and PP-Rib-P synthetase to depletion of GTP with consequent growth retardation.  相似文献   

2.
The effect of 5-amino-4-imidazole-carboximide (AI-CA)-riboside on different pathways of purine metabolism (biosynthesis de novo, salvage pathways, adenosine metabolism, ATP catabolism) was studied in human B lymphoblasts (WI-L2). AICA-Riboside markedly decreased intracellular levels of 5-phosphoribosyl-1-pyrophosphate and in consequence affected purine biosynthesis de novo and purine salvage pathways. AICA-riboside inhibited incorporation of glycine into purine nucleotides, but when formate was used as the precursor of purine biosynthesis de novo, a biphasic effect was observed. The incorporation of formate into purine nucleotides was increased by AICA-riboside at concentrations up to 2 mM but decreased at higher concentrations. Salvage of the purine bases adenine, hypoxanthine, and guanine was markedly inhibited and utilization of extracellular adenosine in B lymphoblasts was reduced by AICA-riboside. AICA-riboside increased ribose 1-phosphate concentrations and increased degradation of prelabeled ATP. No effect on the intracellular levels of orthophosphate was found. Proliferation of WI-L2 lymphoblasts was only slightly affected at concentrations of AICA-riboside below 500 microM but markedly inhibited by higher concentrations.  相似文献   

3.
When cultures of Azotobacter vinelandii are made anaerobic the adenylate pool size remains constant or increases slightly while the adenylate energy charge decreases. Under these conditions, cell growth stops but the cells remain viable for at least 5 h with the decreased energy charge. The changes in the adenylate pool during the aerobic-anaerobic transition include: the formation of adenylates as a result of RNA degradation; the degradation of a portion of the excess AMP to form hypoxanthine by the sequential actions of AMP nucleosidase and adenine deaminase; an increase in the total adenylate pool which is stabilized at approximately 1.5 times the level in growing cells; and stabilization of the adenylate energy charge at a value near 0.3. The degradation of AMP is regulated by AMP nucleosidase, an allosteric enzyme which is activated by MgATP2? and inhibited by Pi. The in vivo activity of AMP nucleosidase was estimated by measuring the rate of hypoxanthine formation in the culture or by measuring the activity of purified enzyme at the concentrations of AMP, ATP, and Pi found in the cells. The maximum estimated in vivo rate of AMP degradation was less than 3% of the catalytic capacity of AMP nucleosidase. Thus ample activity is present for rapid adjustments of the AMP levels in these cells. Expression of AMP nucleosidase catalytic activity is tightly controlled since high constant concentrations of intracellular AMP can be maintained for extended time periods at low adenylate energy charge values. Under these conditions controlled degradation of AMP can occur to maintain a constant AMP concentration.  相似文献   

4.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

5.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) was found in extract of baker's yeast (Saccharomyces cerevisiae), and was purified to electrophoretic homogeneity using phosphocellulose adsorption chromatography and affinity elution by ATP. The enzyme shows cooperative binding of AMP (Hill coefficient, nH, 1.7) with an s0.5 value of 2.6 mM in the absence or presence of alkali metals. ATP acts as a positive effector, lowering nH to 1.0 and s0.5 to 0.02 mM. P1 inhibits the enzyme in an allosteric manner: s0.5 and nH values increase with increase in Pi concentration. In the physiological range of adenylate energy charge in yeast cells (0.5 to 0.9), the AMP deaminase activity increases sharply with decreasing energy charge, and the decrease in the size of adenylate pool causes a marked decrease in the rate of the deaminase reaction. AMP deaminase may act as a part of the system that protects against wide excursions of energy charge and adenylate pool size in yeast cells. These suggestions, based on the properties of the enzyme observed in vitro, are consistent with the results of experiments on baker's yeast in vivo reported by other workers.  相似文献   

6.
Adenine nucleotide breakdown to nucleosides and purine bases was measured in cultures of human lymphoblastoid cells following: 1) the inhibition of oxidative phosphorylation in the absence of glucose or 2) the addition of 2-deoxyglucose. A mutant cell line, deficient in adenosine kinase, in the presence of an adenosine deaminase inhibitor was used to measure utilization of the two pathways of AMP catabolism involving initial action of either purine 5'-nucleotidase or AMP deaminase. In such a system the appearance of adenosine induced by the oxidative phosphorylation inhibitor, rotenone, implies that approximately 70% of AMP breakdown occurs via dephosphorylation. By the same method, deamination accounts for 82% of AMP breakdown when 2-deoxyglucose is added. The occurrence of AMP dephosphorylation is not correlated with elevated concentrations of substrate or with decreased concentrations of the inhibitors of 5'-nucleotidase, ATP and ADP. Dephosphorylation occurs if, and only if, the adenylate energy charge decreases to about 0.6 in these experiments. In cultures deprived of glucose and oxygen, adenine nucleotide degradation via dephosphorylation results in recovery of normal energy charge values.  相似文献   

7.
WI-L2 cells (a B-lymphoblastoid cell line) were more resistant than CEM cells (a T-lymphoblastoid cell line) to deoxyadenosine, ara-A (9-beta-D-arabinofuranosyladenine), or ara-C (1-beta-D-arabinofuranosylcytosine) inhibition. This was caused by a difference in the composition of cytosol 5'-nucleotidases between WI-L2 and CEM cells. In intact cells, the endogenous production of deoxyadenosine from WI-L2 cells deficient in adenosine kinase (EC 2.7.1.20) and deoxycytidine kinase (EC 2.7.1.74) was consistently high, despite changes in endogenous adenosine production. Endogenous production of deoxyadenosine from CEM cells deficient in adenosine kinase and deoxycytidine kinase was, however, coordinated with endogenous adenosine production. In broken cells, cytosol dAMPase (2'-deoxyadenosine 5'-monophosphate 5'-nucleotidase) activity of WI-L2 cells was 3-5-fold higher than that of CEM cells. dAMPase activity could be separated from ATP-activated IMPase (inosine 5'-monophosphate 5'-nucleotidase) by gel filtration (molecular weight: dAMPase; 39,000-46,000; ATP-activated IMPase, greater than 150,000). Cytosol ATP-activated IMPase and dAMPase were isolated by phosphocellulose or DEAE-Bio-Gel A chromatography from non-specific phosphatases. The ATP-activated IMPase showed only marginal activity towards dAMP (2'-deoxyadenosine 5'-monophosphate), ara-AMP (9-beta-D-arabinofuranosyladenine 5'-monophosphate), or ara-CMP (cytosine-beta-D-arabinofuranoside 5'-monophosphate), even in the presence of ATP. The activity of ATP-activated IMPase was similar in WI-L2 and CEM cells. dAMPase was separated into two peaks by DEAE-Bio-Gel A chromatography; one of these peaks degraded ara-AMP and ara-CMP. The activities of both peaks from WI-L2 cells were higher than those from CEM cells. These results show that the degradation of dAMP, ara-AMP or ara-CMP was more specific and rapid in WI-L2 than in CEM cells.  相似文献   

8.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

9.
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.  相似文献   

10.
The role of AMP deaminase reaction in the stabilization of the adenylate energy charge was investigated using permeabilized yeast cells. The addition of Pi or Zn2+, which inhibits AMP deaminase, remarkably retarded the depletion of total adenylate pool and the recovery of the adenylate energy charge. Polyamine, an activator of the enzyme, decreased total adenylates, resulting in the enhanced recovery of the energy charge in situ. AMP deaminase can act as a regulatory enzyme in the system that stabilizes the adenylate energy charge in yeast cells under the conditions of severe metabolic stress.  相似文献   

11.
Mononucleotide Metabolism in the Rat Brain After Transient Ischemia   总被引:3,自引:2,他引:1  
Nucleotide metabolism was studied in rats during and following the induction of 10 min of forebrain ischemia (four-vessel occlusion model). Purine and pyrimidine nucleotides, nucleotides, and bases in forebrain extracts were quantitated by HPLC with an ultraviolet detector. Ischemia resulted in a severe reduction in the concentration of nucleoside triphosphates (ATP, GTP, UTP, and CTP) and an increase in the concentration of AMP, IMP, adenosine, inosine, hypoxanthine, and guanosine. During the recovery period, both the phosphocreatine level and adenylate energy charge were rapidly and completely restored to the normal range. ATP was only 78% of the control value at 180 min after ischemic reperfusion. Levels of nucleosides and bases were elevated during ischemia but decreased to values close to those of control animals following recirculation. Both the decrease in the adenine nucleotide pool and the incomplete ATP recovery were caused by insufficient reutilization of hypoxanthine via the purine salvage system. The content of cyclic AMP, which transiently accumulated during the early recirculation period, returned to the control level, paralleling the decrease of adenosine concentration, which suggested that adenylate cyclase activity during reperfusion is modulated by adenosine A2 receptors. The recovery of CTP was slow but greater than that of ATP, GTP, and UTP. The GTP/GDP ratio was higher than that of the control animals following recirculation.  相似文献   

12.
Purine nucleotide synthesis and interconversion were examined over a range of purine base and nucleoside concentrations in intact N4 and N4TG (hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient) neuroblastoma cells. Adenosine was a better nucleotide precursor than adenine, hypoxanthine or guanine at concentrations greater than 100 μM. With hypoxanthine or guanine, N4TG cells had less than 2% the rate of nucleotide synthesis of N4 cells. At substrate concentrations greater than 100 μM the rates for deamination of adenosine and phosphorolysis of guanosine exceeded those for any reaction of nucleotide synthesis. Labelled inosine and guanosine accumulated from hypoxanthine and guanine, respectively, in HGPRT-deficient cells and the nucleosides accumulated to a greater extent in N4 cells indicating dephosphorylation of newly synthesized IMP and GMP to be quantitatively significant. A deficiency of xanthine oxidase, guanine deaminase and guanosine kinase activities was found in neuroblastoma cells. Hypoxanthine was a source for both adenine and guanine nucleotides, whereas adenine or guanine were principally sources for adenine (>85%) or guanine (>90%) nucleotides, respectively. The rate of [14C]formate incorporation into ATP, GTP and nucleic acid purines was essentially equivalent for both N4 and N4TG cells. Purine nucleotide pools were also comparable in both cell lines, but the concentration of UDP-sugars was 1.5 times greater in N4TG than N4 cells.  相似文献   

13.
Regulation of cytosol 5'-nucleotidase by adenylate energy charge   总被引:5,自引:0,他引:5  
In the physiological range of the adenylate energy charge in liver (0.7-0.9), th rate of AMP-hydrolysis catalysed by rat liver cytosol 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) increased sharply with decreasing energy charge. In addition, a decrease in the concentration of Pi caused marked acceleration of the AMP-hydrolysing activity over the physiological range of adenylate energy charge. These responses seem to serve to protect the cells against a metabolic stress which could result from sudden utilization of ATP by removal of AMP. The AMP-hydrolysing activity of this enzyme decreased sharply as the size of the adenine nucleotide pool decreased in the physiological range. This effect may be a self-limiting response to prevent excess depletion of the pool. IMP-hydrolysing activity of this enzyme increased with increasing adenylate energy charge. But no marked response to its variation within the physiological range was observed. On the basis of the data obtained in this study, the IMP-hydrolysing activity of the cytosol 5'-nucleotidase in rat liver cells seems to be comparable to that of AMP deaminase reaction, but the AMP-hydrolysing activity was estimated to be less than 10% of AMP deaminase reaction at energy charge value of about 0.7. This strongly suggests that the AMP leads to IMP leads to inosine pathway is more significant that the AMP leads to adenosine leads to inosine pathway in rat liver.  相似文献   

14.
Abstract: A rat neuroma cell line (B103 4C), deficient of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), was utilized as a model tissue in search for the biochemical basis of the Lesch-Nyhan syndrome (LNS). The HGPRT-deficient neurons exhibited the following properties: an almost complete absence of uptake of guanine and of hypoxanthine into intact cell nucleotides (0.92% and 0.69% of normal, respectively); a significant increase in the availability of 5'-phosphoribosyl-1-pyrophosphate; a three- to fourfold acceleration of the rate of de novo nucleotide synthesis; a normal excretion of xanthine, but 15-fold increase in the excretion of hypoxanthine into the culture media; a normal cellular purine nucleotide content, including the absence of 5-amino-4-imidazole carboxamide nucleotides (Z-nucleotides), but enhanced turnover of adenine nucleotides (loss of 86% of the radioactivity of the prelabeled pool in 24 h, in comparison to 73% in the normal line), and an elevated UTP content. The results suggest that, under physiological conditions, guanine salvage does not occur in the normal neurons, but that hypoxanthine salvage is of great importance in the homeostasis of the adenine nucleotide pool. The finding of the normal profile of purine nucleotides in the HGPRT-deficient neurons indicates that the lack of hypoxanthine salvage is adequately compensated by the enhanced de novo nucleotide synthesis. These results did not furnish evidence in support of the possibility that GTP or ATP depletion, or Z-nucleotide accumulation, occurs in HGPRT-deficient neurons and that these are etiological factors causing the neurological abnormalities in LNS. On the other hand, the results point to the possibility that elevated hypoxanthine concentration in the brain may have an etiological role in the pathogenesis of LNS.  相似文献   

15.
Purine and pyrimidine metabolism in human muscle and cultured muscle cells   总被引:3,自引:0,他引:3  
Using radiochemical methods, we determined the activities of various enzymes of purine and pyrimidine metabolism in homogenates of human skeletal muscle and of cultured human muscle cells. Results show a large discrepancy between the enzyme activities in muscle and cultured cells. With regard to purine metabolism, adenylate (AMP) deaminase activity was only 1-3% in cultured cells compared to that in muscle, whereas the activity of adenosine deaminase, purine-nucleoside phosphorylase, adenosine kinase, adenine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase was 7-15-fold higher in the cultured cells. The enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase and uridine kinase showed activity of 100-200-fold higher in cultured cells than in adult muscle. The differences in enzyme activity are probably related to the low differentiation stage and the absence of contractile activity in the cultured muscle cells. Care must be taken when using these cells as a model for studying purine and pyrimidine metabolism of adult myofibers.  相似文献   

16.
A purine nucleotide (inosinate) cycle is demonstrated with human lymphoblasts. The lymphoblast requires approximately 50 nmol of purine/10(6) cell increment. When the inosinate cycle is interrupted by the genetic, severe deficiency of either or both purine nucleoside phosphorylase (PNP) or hypoxanthine phosphoribosyltransferase (HPRT), purine accumulates in the culture medium as inosine, guanosine, deoxyinosine, and deoxyguanosine (PNP deficiency or PNP, HPRT deficiency) or hypoxanthine and guanine (HPRT deficiency). This accumulation represents an additional 25 to 32 nmol of purine which must be synthesized per 10(6) cell increment. PNP-deficient lymphoblasts have PPRibP contents characteristic of normal lymphoblasts, about 20 to 25 pmol/10(6) cells. HPRT-deficient lymphoblasts have four times higher PPRibP contents. The lymphoblast deficient for both PNP and HPRT has only a marginal elevation of PPRibP content, 1.5 times normal values. The elevated PPRibP content of HPRT-deficient cells reflects the efficient, unilateral reutilization of the ribose moiety of purine ribonucleotides and is not a cause of purine overproduction. Purine overproduction characterizing PNP-deficient lymphoblasts appears similar to overproduction from deficiency of HPRT, i.e. a break in the inosinate cycle rather than overactive de novo purine synthesis.  相似文献   

17.
18.
We propose that the ratio of [14C]formate-labelled purine nucleosides and bases (both intra and extracellular) to nucleic acid purines provides, in exponentially growing cultures, a sensitive index for comparative studies of purine metabolism. This ratio was 4-fold greater for an HGPRT- mutant than for the parental HGPRT+ human lymphoblast line. The major components of the labelled nucleoside and base fraction were hypoxanthine and inosine. By blocking adenosine deaminase activity with coformycin we found that approx. 90% of inosine was formed directly from IMP rather than the route IMP leads to AMP leads to adenosine leads to inosine. The ratio of labelled base + nucleosides to nucleic acids was essentially unchagned for an AK- lymphoblast line and 2-fold greater than control for an HGPRT(-)-KAK- line, demonstrating that a deficiency of adenosine kinase alone has little effect on the accumulation of purine nucleosides and bases. Although adenosine was a minor component of the nucleoside and base fraction, the adenosine fraction increased from 3 to 13% with the addition of coformycin to the HGPRT(-)-AK- line. In the parental and HGPRT- lines, adenosine was shown to be primarily phosphorylated rather than deaminated at concentrations less than 5 microM. Inhibition of IMP dehydrogenase activity by mycophenolic acid caused a 12- and 3-fold increase in the rate of production of labelled base and nucleoside in the parent and HGPRT- cells respectively. These results suggest that a mutationally induced partial deficiency in the activities converting IMP to guanine nucleotides may result in an increased catabolism of IMP.  相似文献   

19.
The activities (Vmax) of several enzymes of purine nucleotide metabolism were assayed in premature and mature primary rat neuronal cultures and in whole rat brains. In the neuronal cultures, representing 90% pure neurons, maturation (up to 14 days in culture) resulted in an increase in the activities of guanine deaminase (guanase), purine-nucleoside phosphorylase (PNP), IMP 5'-nucleotidase, adenine phosphoribosyltransferase (APRT), and AMP deaminase, but in no change in the activities of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), adenosine deaminase, adenosine kinase, and AMP 5'-nucleotidase. In whole brains in vivo, maturation (from 18 days of gestation to 14 days post partum) was associated with an increase in the activities of guanase, PNP, IMP 5'-nucleotidase, AMP deaminase, and HGPRT, a decrease in the activities of adenosine deaminase and IMP dehydrogenase, and no change in the activities of APRT, AMP 5'-nucleotidase, and adenosine kinase. The profound changes in purine metabolism, which occur with maturation of the neuronal cells in primary cultures in vitro and in whole brains in vivo, create an advantage for AMP degradation by deamination, rather than by dephosphorylation, and for guanine degradation to xanthine over its reutilization for synthesis of GMP. The physiological meaning of the maturational increase in these two ammonia-producing enzymes in the brain is not yet clear. The striking similarity in the alterations of enzyme activities in the two systems indicates that the primary culture system may serve as an appropriate model for the study of purine metabolism in brain.  相似文献   

20.
The ability of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells to drive their total purine requirements from inosine 5'-monophosphate, inosine, or hypoxanthine was compared. Inosine 5'-monophosphate first must be converted to inosine by the action of the enzyme ecto-5'-nucleotidase before it can be transported into the cell; inosine and hypoxanthine, however, can be transported directly. Mitogen-stimulated human peripheral blood T cells were treated with aminopterin to inhibit purine synthesis de novo and to make the cells dependent on an exogenous purine source. Thymidine was added as a source of pyrimidines. Under these conditions, 30 microM inosine 5'-monophosphate, inosine, and hypoxanthine showed comparable abilities to support [3H]thymidine incorporation into DNA or [3H]leucine incorporation into protein at rates equal to that of untreated control cultures. Similar results were found when azaserine was used to inhibit purine synthesis de novo, and thus DNA synthesis. In parallel experiments with the rapidly dividing human B lymphoblastoid cell line WI-L2, treatment with aminopterin (plus thymidine) inhibited the growth rate by greater than 95%. The normal growth rate was restored by the addition of 30 microM inosine 5'-monophosphate, inosine, or hypoxanthine to the medium. However, in similar experiments with cell line 1254, a derivative of WI-L2 which lacks detectable ecto-5'-nucleotidase activity, inosine and hypoxanthine (plus thymidine), but not inosine 5'-monophosphate (and thymidine) were able to restore the growth inhibition due to aminopterin. These results show that the catalytic activity of ecto-5'-nucleotidase is sufficient to meet the total purine requirements of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells, and suggest that this enzyme may be important for purine salvage when rates of purine synthesis de novo are limited and/or an extracellular source of purine nucleotides is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号