首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oat receptor-like kinase gene sequences, homologous to the Lrk10 gene from wheat (Triticum aestivum L.), were mapped in oat (Avena sativa L.). PCR primers designed from the wheat Lrk10 were used to produce ALrk10 from oat. Two DNA sequences, ALrk1A1 and ALrk4A5, were produced from primers designed from coding and noncoding regions of ALrk10. Their use as RFLP probes indicated that the kinase genes mapped to four loci on different hexaploid oat 'Kanota' x 'Ogle' linkage groups (4_12, 5, 6, and 13) and to a fifth locus unlinked to other markers. Three of these linkage groups contain a region homologous to the short arm of chromosome I of wheat and the fourth contains a region homologous to chromosome 3 of wheat. Analysis with several nullisomics of oat indicated that two of the map locations are on satellite chromosomes. RFLP mapping in a 'Dumont' x 'OT328' population indicated that one map location is closely linked to Pg9, a resistance gene to oat stem rust (Puccinia graminis subsp. avenae). Comparative mapping indicates this to be the region of a presumed cluster of crown rust (Puccinia coronata subsp. avenae) and stem rust resistance genes (Pg3, Pg9, Pc44, Pc46, Pc50, Pc68, Pc95, and PcX). The map position of several RGAs located on KO6 and KO3_38 with respect to Lrk10 and storage protein genes are also reported.  相似文献   

2.
 The recent recovery of maize (Zea mays L.) single-chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses has provided novel source materials for the potential isolation of maize chromosome-specific sequences for use in genetic mapping and gene cloning. We report here the application of a technique, known as representational difference analysis (RDA), to selectively isolate maize sequences from a maize chromosome-3 addition line of oat. DNA fragments from the addition line and from the oat parent were prepared using BamHI digestion and primer ligation followed by PCR amplification. A subtractive hybridization technique using an excess of the oat parental DNA was employed to reduce the availability for amplification of DNA fragments from the addition lines that were in common with the ones from the oat parental line. After three rounds of hybridization and amplification, the resulting DNA fragments were cloned into a plasmid vector. A DNA library containing 400 clones was constructed by this method. In a test of 18 clones selected at random from this library, four (22%) detected maize-specific repetitive DNA sequences and nine (50%) showed strong hybridization to genomic DNA of maize but weak hybridization to genomic DNA of oat. Among these latter nine clones, three detected low-copy DNA sequences and two of them detected DNA sequences specific to chromosome 3 of maize, the chromosome retained in the source maize addition line of oat. The other eight out of the 13 clones that had strong hybridization to maize DNA detected repetitive DNA sequences or high-copy number sequences present on most or all maize chromosomes. We estimate that the maize DNA sequences were enriched from about 1.8% to over 72% of the total DNA by this procedure. Most of the isolated DNA fragments detected multiple or repeated DNA sequences in maize, indicating that the major part of the maize genome consists of repetitive DNA sequences that do not cross-hybridize to oat genomic sequences. Received: 18 November 1997 / Accepted: 12 March 1998  相似文献   

3.
Comparative mapping in grasses. Oat relationships   总被引:8,自引:0,他引:8  
The development of RFLP linkage maps in hexaploid and diploid oat allows us to study genetic relationships of these species at the DNA level. In this report, we present the extension of a previously developed diploid oat map (Avena atlantica x A. hirtula) and its molecular-genetic relationships with wheat, rice and maize. Examination of 92–99% of the length of the oat genome map with probes common to Triticeae species, rice or maize showed that 84, 79 and 71%, respectively, was conserved between these species and oat. Generally, the orders of loci among chromosomes homoeologous to oat chromosomes A and D were the most conserved and those of chromosomes homoeologous to oat chromosome G were the least conserved. Conservation was observed for blocks ranging from whole chromosomes 101 cM long to small segments 2.5 cM long containing two loci. Comparison of the homoeologous segments of Triticeae, rice and maize relative to oat indicated that certain regions have been maintained in all four species. The relative positions of major genes governing traits such as seed storage proteins and resistance to leaf rusts have been conserved between cultivated oat and Triticeae species. Also, the locations of three vernalization/or photo-period response genes identified in hexaploid oat correspond to the locations of similar genes in homoeologous chromosomes of wheat, rice or maize. The locations of the centromeres for six of the seven oat chromosomes were estimated based on the homoeologous segments between oat and Triticeae chromosomes.  相似文献   

4.
T Tabata  K Sasaki    M Iwabuchi 《Nucleic acids research》1983,11(17):5865-5875
Some wheat histone H4 genes have been cloned from a Charon 4 wheat genomic DNA library using sea urchin histone H4 DNA as a probe. DNA sequence analysis of a cloned gene showed that the deduced amino acid sequence of wheat histone H4 protein was identical to that of pea. The 5' end of wheat histone H4 mRNA was mapped on the cloned gene by the S1-procedure. Southern blotting analysis of the genomic DNA indicated that histone H4 genes were reiterated 100 to 125 times per hexaploid wheat genome.  相似文献   

5.
The genomic distribution of 23 nuclear genes from three dicotyledons (pea, sunflower, tobacco) and five monocotyledons of the Gramineae family (barley, maize, rice, oat, wheat) was studied by localizing these genes in DNA fractions obtained by preparative centrifugation in Cs2SO4/BAMD density gradients. Each one of these genes (and of many other related genes and pseudogenes) was found to be located in DNA fragments (50-100 Kb in size) that were less than 1-2% GC apart from each other. This definitively demonstrates the existence of isochores in plant genomes, namely of compositionally homogeneous DNA regions at least 100-200 Kb in size. Moreover, the GC levels of the 23 coding sequences studied, of their first, second and third codon positions, and of the corresponding introns were found to be linearly correlated with the GC levels of the isochores harboring those genes. Compositional correlations displayed increasing slopes when going from second to first to third codon position with obvious effects on codon usage. Coding sequences for seed storage proteins and phytochrome of Gramineae deviate from the compositional correlations just described. Finally, CpG doublets of coding sequences were characterized by a shortage that decreased and vanished with increasing GC levels of the sequences. A number of these findings bear a striking similarity with results previously obtained for vertebrate genes.  相似文献   

6.
It has been proposed that transgenic plants of cereals can be generated by inoculating florets with Agrobacterium at or near anthesis. This procedure is shown to lead to the production of embryos of wheat and barley with enhanced resistance to antibiotic selection. It has also been possible to recover plants of wheat, barley and maize that gave positive hybridization signals with probes produced from within the T-DNA of the Agrobacterium vector. However, no evidence was found for transmission of the bands detected by hybridization in the progeny of the putative transgenic plants nor could enzyme activity associated with the resistance genes be found in plant extracts. Furthermore, undigested genomic DNA from the plants that were positive when probed with the T-DNA, showed hybridization to bands smaller than the genomic DNA. It is suggested that the apparent transformation is an artifact of the procedure and does not reflect transformation of the plant nuclear genome.  相似文献   

7.
We have used a cDNA clone encoding a pathogen-induced putative wheat peroxidase to screen a genomic libary of wheat (Triticum aestivum L. cv. Cheyenne) and isolated one positive clone, lambda POX1. Sequence analysis revealed that this clone contains a gene encoding a putative peroxidase with a calculated pI of 8.1 which exhibits 58% and 83% sequence identity to the amino acid sequence of the turnip (Brassica rapa) peroxidase and a pathogen-induced putative wheat peroxidase, respectively. The two introns in the wheat gene are at the same positions as introns in the peroxidase genes of tomato and horseradish. Results of S1-mapping experiments suggest that this gene is neither pathogen-nor wound-induced in leaves but is constitutively expressed in roots.  相似文献   

8.
The feasibility of using bulk segregant analysis to identify molecular markers for disease resistance genes in oats was investigated, utilizing random primers in conjunction with polymerase chain reaction technology. Random primers were screened for the amplification of polymorphic DNA fragments on two pools of genomic DNA isolated from plants that were homozygous for the presence and absence of the crown rust resistance gene Pc68. Ten primers were identified that amplified polymorphic DNA fragments. Of these, one was tightly linked, in repulsion, to the target gene, while the other nine were not linked to this trait. The relatively low cost of polymerase chain reaction technology, coupled with rapid leaf disc genomic DNA extraction techniques should result in the effective use of this linked marker in oat breeding selection programs.  相似文献   

9.
A collection of 19 wheat (Triticum aestivum) probes, detecting sequences in the seven homoeologous groups of chromosomes, were hybridized to DNA from the 'Kanota' series of oat monosomic lines (Avena byzantina) to investigate their use for identifying groups of homoeologous oat chromosomes. Three probes from homoeologous group 1 of wheat, psr161, psr162, and psr121, mapped among the set of oat chromosomes 1C, 14, and 17. One homoeologous group 6 probe, psr167, mapped to oat chromosomes 1C and 17. Two oat probes that had previously been shown to map to oat chromosomes 1C, 14, and 17 were then hybridized to DNA from the 'Chinese Spring' wheat ditelosomics. They localized to homoeologous group 1 wheat chromosomes, one to the short arm and one to the long arm. These results reveal that in hexaploid oat there is a group of three chromosomes that correspond at least in part to homoeologous group 1 of wheat. The remaining wheat probes identifying other wheat homoeologous sets did not detect a complete series of homoeologous chromosomes in oat. This was presumably due to the incomplete status of the 'Kanota' monosomic series, chromosomal rearrangement in Avena, weak hybridization signals owing to low probe-target sequence homology, and (or) detection of only two hybridization bands by the wheat probe.  相似文献   

10.
Summary A cDNA library was made from poly(A+) RNA isolated from developing oat seeds, and oat globulin cDNA clones were identified by hybridization with synthetic oligonucleotides. Globulin clones were characterized by restriction enzyme mapping and cross-hybridization analysis. Based on these comparisons, four classes of globulin clones were distinguished. These clones hybridized to multiple DNA fragments in restriction enzyme digests of oat genomic DNA, indicating that the genes exist in a multigene family. The nucleotide sequence of one of the globulin cDNA clones was determined. The amino acid sequence derived from the DNA sequence verified its identity as an oat globulin and confirmed that the protein is synthesized as a precursor similar to legume 11S storage globulins. The basic polypeptide encoded at the 3 end of the mRNA was found to be homologous to the basic polypeptides of other 11S seed globulins.Abbreviations ds double stranded - kb kilobase Author to whom correspondence should be addressed. Journal paper number 10460 of the Purdue Agricultural Experimental Station.  相似文献   

11.
Group 1 chromosomes of the Triticeae tribe have been studied extensively because many important genes have been assigned to them. In this paper, chromosome 1 linkage maps of Triticum aestivum, T. tauschii, and T. monococcum are compared with existing barley and rye maps to develop a consensus map for Triticeae species and thus facilitate the mapping of agronomic genes in this tribe. The consensus map that was developed consists of 14 agronomically important genes, 17 DNA markers that were derived from known-function clones, and 76 DNA markers derived from anonymous clones. There are 12 inconsistencies in the order of markers among seven wheat, four barley, and two rye maps. A comparison of the Triticeae group 1 chromosome consensus map with linkage maps of homoeologous chromosomes in rice indicates that the linkage maps for the long arm and the proximal portion of the short arm of group 1 chromosomes are conserved among these species. Similarly, gene order is conserved between Triticeae chromosome 1 and its homoeologous chromosome in oat. The location of the centromere in rice and oat chromosomes is estimated from its position in homoeologous group 1 chromosomes of Triticeae.  相似文献   

12.
Chen D  Zhang W  Zhu ZD  Huang Y  Wang P  Zhou BB  Yang XN  Xiao HS  Zhang QH 《遗传》2010,32(12):1296-1303
文章旨在建立一种基因组目标靶序列捕捉文库的方法,并结合第二代测序技术,以实现候选基因区段的深度测序。利用Agilent公司的eArray在线平台,对1250个基因的11824个外显子共2414977bp的基因组序列进行120个碱基长度的捕捉探针(钓饵)设计,并制备成SureSelect液相靶序列捕获试剂。选用2例人基因组DNA,超声打断后末端补平并磷酸化,连接SOLiD接头,回收150bp~200bp的DNA片段,与靶序列探针杂交捕获目标序列,油包水微乳滴PCR扩增后,磁珠分离富集,上SOLiD测序系统通过工作流程分析(WFA)进行文库质量的评价,或正式测序反应。结果显示对所包含的11147个基因外显子片段设计出并合成了46509个捕捉探针,制备成SureSelect试剂盒。探针可有效地捕捉并富集基因组DNA的目标靶片段,定量PCR显示富集效率可达29倍。WFA分析表明文库可以在SOLiD仪器进行正式测序。测序结果显示靶序列区域的测序数占有效总测序数的比例达到70%,覆盖率均在200×以上。结果表明本研究所建立的SureSelect基因组靶序列捕捉、富集建立测序文库的技术路线可行,可直接用于SOLiD测序仪的测序。  相似文献   

13.
We have developed the 2-step PCR method, a kind of suppression PCR procedure, to isolate simple sequence repeats (SSRs) from common wheat (Triticum aestivum L.) in a more convenient manner. This system requires neither genomic library screening nor the SSR-enrichment procedure. As a result, we designed 131 primer pairs based on isolated SSRs from not only genomic DNA, but also transformation-competent artificial chromosome (TAC) clones. It has been demonstrated that 34 of the 131 SSR markers developed were polymorphic among 8 wheat lines. Four of 34 polymorphic SSR markers were derived from TAC clones, indicating that this method could be applied to the targeted development of unique SSR markers in large genomic DNA libraries such as those composed of bacterial artificial chromosomes (BACs). A considerable number of isolated SSR clones had similarities with part of several long terminal repeats of retrotransposons (LTR-RTs) identified in various Triticeae genome sequences. Most of those SSRs showed smear amplification profiles, suggesting that a considerable number of dysfunctional SSRs originating from repetitive DNA components, especially LTR-RTs, might exist in the common wheat genome.  相似文献   

14.
15.
16.
DNA gel-blot and in situ hybridization with genome-specific repeated sequences have proven to be valuable tools in analyzing genome structure and relationships in species with complex allopolyploid genomes such as hexaploid oat (Avena sativa L., 2n = 6x = 42; AACCDD genome). In this report, we describe a systematic approach for isolating genome-, chromosome-, and region-specific repeated and low-copy DNA sequences from oat that can presumably be applied to any complex genome species. Genome-specific DNA sequences were first identified in a random set of A. sativa genomic DNA cosmid clones by gel-blot hybridization using labeled genomic DNA from different Avena species. Because no repetitive sequences were identified that could distinguish between the A and D gneomes, sequences specific to these two genomes are refereed to as A/D genome specific. A/D or C genome specific DNA subfragments were used as screening probes to identify additional genome-specific cosmid clones in the A. sativa genomic library. We identified clustered and dispersed repetitive DNA elements for the A/D and C genomes that could be used as cytogenetic markers for discrimination of the various oat chromosomes. Some analyzed cosmids appeared to be composed entirely of genome-specific elements, whereas others represented regions with genome- and non-specific repeated sequences with interspersed low-copy DNA sequences. Thus, genome-specific hybridization analysis of restriction digests of random and selected A. sativa cosmids also provides insight into the sequence organization of the oat genome.  相似文献   

17.
18.
19.
Seven-day-old seedlings of the near-isogenic wheat ( Triticum aestivum L.) lines Prelude and Prelude-Sr5, susceptible and resistant to wheat stem rust, respectively, were inoculated with uredospores of the oat crown rust fungus Puccinia coronata Cda. f. sp. avenae Fraser & Led. Fluorescence microscopy revealed that the majority of colonies developed intercellular infection structures including haustorial mother cells and haustoria after penetration of wheat mesophyll cells. All penetrated cells became necrotic, and exhibited bright yellow autofluorescence. This autofluorescence was not extractable with alkali, and fluorescent cells stained positively with phloroglucinol/HCI, suggesting that hypersensitive cell death was correlated with cellular lignification. Accordingly, the lignin biosynthetic enzymes phenylalanine ammonia-lyase (EC4.3.1.5). 4-coumarate:CoA ligase (EC6.2.1.12), cinnamyl-alcohol dehydrogenase (EC1.1.1.149), and peroxidases (EC1.11.1.7) increased in activity during the expression of resistance. The induced pattern of peroxidase iso/ymes closely resembled that observed for highly incompatible wheat/wheat stem rust interactions. Furthermore, an elieitor was extracted from oat crown rust germlings. which induces lignification when injected into the intercellular space of wheat leaves. This elieitor appears to be functionally similar to that isolated from wheat stem rust germlings. The results suggest that the non-host resistance of wheat to the xenopara-site oat crown rust closely resembles the race/cullivar-speeific resistant mechanism of highly resistant wheat varieties to wheat stem rust.  相似文献   

20.
DNA methylation is a general epigenetic mechanism for plants, animals, and fungi to adapt to environmental variation. Two biotypes of the Russian wheat aphid (Diuraphis noxia), Biotype 1 and Biotype 2, have different virulence to host plants. In this study, in addition to a high polymorphism, DNA methylation at cytosines were observed in genomic fragments of four genes in Biotype 1 and Biotype 2, after the genomic DNA was treated with sodium bisulfite. These genes presumably encode proteins and enzymes in salivary glands of aphids. The two Biotype 1 showed different methylation levels, that is, Biotype 1 showed a higher methylation on the four genes. Two thirds of methyl cytosines were in a sequence context of CHH (H = A, C, or T). Some polymorphism and methylation sites were located at important positions in terms of enzyme function, such as close to catalytic residues or inhibitor binding residues. These findings may provide clues to explore the evolutionary mode between Russian wheat aphid virulence and resistance genes of host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号