首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel species of Acidimicrobium appeared to be the predominant ferrous iron oxidizer in a mixed culture that effected the continuous, efficient extraction of nickel from a mineral concentrate at 49 degrees C, but it was not isolated in pure culture. It outcompeted Acidimicrobium ferrooxidans, which was expected to have a major role in iron oxidation in reactors gassed with air, and was outnumbered at 49 degrees C only by the sulfur-oxidizing Acidithiobacillus caldus. Sulfobacillus species were expected to compete with Acidimicrobium species when culture aeration was enriched with carbon dioxide, but they were a minor component of the populations with and without this enrichment. Sulfobacillus thermosulfidooxidans replaced the Acidimicrobium species and Acidithiobacillus caldus when the temperature was increased to 55 degrees C.  相似文献   

2.
Meloidogyne enterolobii and M. floridensis are virulent species that can overcome root-knot nematode resistance in economically important crops. Our objectives were to determine the effects of temperature on the infectivity of second-stage juveniles (J2) of these two species and determine differences in duration and thermal-time requirements (degree-days [DD]) to complete their developmental cycle. Florida isolates of M. enterolobii and M. floridensis were compared to M. incognita race 3. Tomato cv. BHN 589 seedlings following inoculation were placed in growth chambers set at constant temperatures of 25°C, and 30°C, and alternating temperatures of 30°C to 25°C (day–night). Root infection by the three nematode species was higher at 30°C than at 25°C, and intermediate at 30°C to 25°C, with 33%, 15%, and 24% infection rates, respectively. There was no difference, however, in the percentages of J2 that infected roots among species at each temperature. Developmental time from infective J2 to reproductive stage for the three species was shorter at 30°C than at 25°C, and 30°C to 25°C. The shortest time and DD to egg production for the three species were 13 days after inoculation (DAI) and 285.7 DD, respectively. During the experimental timeframe of 29 d, a single generation was completed at 30°C for all three species, whereas only M. floridensis completed a generation at 30°C to 25°C. The number of days and accumulated DD for completing the life cycle (from J2 to J2) were 23 d and 506.9 DD for M. enterolobii, and 25 d and 552.3 DD for M. floridensis and M. incognita, respectively. Exposure to lower (25°C) and intermediate temperatures (30°C to 25°C) decreased root penetration and slowed the developmental cycle of M. enterolobii and M. floridensis compared with 30°C.  相似文献   

3.
The short-term effects of temperature on methanogenesis from acetate or CO2 in a thermophilic (58°C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with 14C-labeled methane precursors (14CH3COO or 14CO2). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60°C and was completely inhibited at 65°C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58°C and did not grow or produce methane at 65°C. An accidental shift of digestor temperature from 58 to 64°C during this period caused a sharp decrease in gas production and a large increase in acetate concentration within 24 h, indicating that the aceticlastic methanogens in the digestor were the population most susceptible to this temperature increase. During a later period when Methanothrix sp. was numerous in the digestor, methanogenesis from 14CH3COO was optimal at 65°C and completely inhibited at 75°C. A partially purified Methanothrix enrichment culture derived from the digestor had a maximum growth temperature near 70°C. Methanogenesis from 14CO2 in the sludge was optimal at 65°C and still proceeded at 75°C. A CO2-reducing Methanobacterium sp. isolated from the digestor was capable of methanogenesis at 75°C. During the period when Methanothix sp. was apparently dominant, sludge incubated for 24 h at 65°C produced more methane than sludge incubated at 60°C, and no acetate accumulated at 65°C. Methanogenesis was severely inhibited in sludge incubated at 70°C, but since neither acetate nor H2 accumulated, production of these methanogenic substrates by fermentative bacteria was probably the most temperature-sensitive process. Thus, there was a correlation between digestor performance at different temperatures and responses to temperature by cultures of methanogens believed to play important roles in the digestor.  相似文献   

4.
5.
6.
We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16–35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g−1 h−1 for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution.  相似文献   

7.
8.
The marine archaebacterium Methanococcus jannaschii was studied at high temperatures and hyperbaric pressures of helium to investigate the effect of pressure on the behavior of a deep-sea thermophile. Methanogenesis and growth (as measured by protein production) at both 86 and 90°C were accelerated by pressure up to 750 atm (1 atm = 101.29kPa), but growth was not observed above 90°C at either 7.8 or 250 atm. However, growth and methanogenesis were uncoupled above 90°C, and the high-temperature limit for methanogenesis was increased by pressure. Substantial methane formation was evident at 98°C and 250 atm, whereas no methane formation was observed at 94°C and 7.8 atm. In contrast, when argon was substituted for helium as the pressurizing gas at 250 atm, no methane was produced at 86°C. Methanogenesis was also suppressed at 86°C and 250 atm when the culture was pressurized with a 4:1 mix of H2 and CO2, although limited methanogenesis did occur when the culture was pressurized with H2.  相似文献   

9.
10.
This large-scale study compared incubation temperatures (37°C versus 42°C) to study the detection of thermophilic Campylobacter species, including Campylobacter jejuni, C. coli, and C. lari, in various surface water samples and bird fecal droppings around Hamilton Harbor, Lake Ontario. The putative culture isolates obtained from incubation temperatures of 37 and 42°C were confirmed by Campylobacter genus- and species-specific triplex PCR assays targeting the 16S rRNA gene and the 16S-23S rRNA gene internal transcribed spacer (ITS) region. A total of 759 water, wastewater, and bird fecal dropping samples were tested. Positive amplification reactions for the genus Campylobacter were found for 454 (60%) samples incubated at 37°C, compared to 258 (34%) samples incubated at 42°C. C. jejuni (16%) and C. lari (12%) were detected significantly more frequently at the 42°C incubation temperature than at 37°C (8% and 5%, respectively). In contrast, significantly higher rates of C. coli (14%) and other Campylobacter spp. (36%) were detected at the 37°C incubation temperature than at 42°C (8% and 7%, respectively). These results were consistent across surface water, wastewater, and bird fecal dropping samples. At times, Campylobacter spp. were recovered and detected at 37°C (3% for C. jejuni, 10% for C. coli, and 3% for C. lari) when the same samples incubated at 42°C were negative. A significantly higher rate of other Campylobacter spp. was detected only at 37°C (32%) than only at 42°C (3%). These results indicate that incubation temperature can significantly influence the culturability and detection of thermophilic and other fastidious Campylobacter spp. and that a comprehensive characterization of the Campylobacter spp. in surface water, wastewaters, or bird fecal droppings will require incubation at both 37 and 42°C.  相似文献   

11.
α-Amylase from the antarctic psychrophile Alteromonas haloplanktis is synthesized at 0 ± 2°C by the wild strain. This heat-labile α-amylase folds correctly when overexpressed in Escherichia coli, providing the culture temperature is sufficiently low to avoid irreversible denaturation. In the described expression system, a compromise between enzyme stability and E. coli growth rate is reached at 18°C.  相似文献   

12.
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25°C, 37°C, and 42°C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37°C or 42°C than at 25°C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25°C than at 37°C or 42°C. On glass surfaces, the biofilms were formed faster but attached less stably at 37°C or 42°C than at 25°C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37°C or 42°C were mycelial mat like and were composed of filamentous cells, while at 25°C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37°C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.  相似文献   

13.
A recombinant protein expression system working at low temperatures is expected to be useful for the production of thermolabile proteins. We constructed a low-temperature expression system using an Antarctic cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. We evaluated the promoters for proteins abundantly produced at 4°C in this bacterium to express foreign proteins. We used 27 promoters and a broad-host-range vector, pJRD215, to produce β-lactamase in Shewanella sp. strain Ac10. The maximum yield was obtained when the promoter for putative alkyl hydroperoxide reductase (AhpC) was used and the recombinant cells were grown to late stationary phase. The yield was 91 mg/liter of culture at 4°C and 139 mg/liter of culture at 18°C. We used this system to produce putative peptidases, PepF, LAP, and PepQ, and a putative glucosidase, BglA, from a psychrophilic bacterium, Desulfotalea psychrophila DSM12343. We obtained 48, 7.1, 28, and 5.4 mg/liter of culture of these proteins, respectively, in a soluble fraction. The amounts of PepF and PepQ produced by this system were greater than those produced by the Escherichia coli T7 promoter system.  相似文献   

14.
Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination.  相似文献   

15.
The effect of temperature on the infection of larvae of the greater wax moth, Galleria mellonella, by Heterorhabditis megidis H90 and Steinernema carpocapsae strain All, was determined. For both species, infection, reproduction, and development were fastest at 20 to 24 °C. Infection by both H. megidis and S. carpocapsae occurred between 8 and 16 °C; however, neither species reproduced at 8 °C. Among the nematodes used in experiments at 8 °C, no H. megidis and very few S. carpocapsae developed beyond the infective juvenile stage. Compared with H. megidis, S. carpocapsae invaded and killed G. mellonella larvae faster at 8 to 16 °C. By comparing invasion rates, differences in infectivity between the two nematode species were detected that could not be detected in conventional petri dish bioassays where mortality was measured after a specified period. Invasion of G. mellonella larvae by H. megidis was faster at 24 than at 16 °C.  相似文献   

16.
1. Myxophyceae normally growing at 65°C. evolved oxygen upon irradiation and showed evidence of retaining the power to carry on the process of photosynthesis at 20°C. This indicates that extra thermal energy is not essential for photosynthesis at least over a short period of time. 2. Chlorophyll a and b found in several species of Myxophyceae growing in waters ranging in temperature from 37–72°C. are essentially the same as found in plants growing all over the world. Certain standard chemical tests and spectroscopic examination of the chlorophylls were used as the criteria for these comparisons. The ratio of chlorophyll a to b often varied considerably but in general chlorophyll a showed an increase over the percentage found in most plants. 3. Green algae (Chlorella sp.?) were the only forms found at The Geysers, California. The temperature of the waters from which collections were made varied from 49–66°C. 4. Collections from Beowawe, Nevada were from waters ranging from 60–71°C. The algae belonged to the Myxophyceae and the species were like some of those found in Yellowstone National Park. 5. In some of the calcareous regions of Yellowstone National Park spectroscopic study of the chlorophylls revealed an unidentified absorption band at 548 mµ.  相似文献   

17.

Introduction

A number of studies have attempted to predict the effects of climate change on schistosomiasis risk. The importance of considering different species of intermediate host snails separately has never previously been explored.

Methods

An agent-based model of water temperature and Biomphalaria pfeifferi population dynamics and Schistosoma mansoni transmission was parameterised to two additional species of snail: B. glabrata and B. alexandrina.

Results

Simulated B. alexandrina populations had lower minimum and maximum temperatures for survival than B. pfeifferi populations (12.5–29.5°C vs. 14.0–31.5°C). B. glabrata populations survived over a smaller range of temperatures than either B. pfeifferi or B. alexandrina (17.0°C–29.5°C). Infection risk peaked at 16.5°C, 25.0°C and 19.0°C respectively when B. pfeifferi, B. glabrata and B. alexandrina were simulated. For all species, infection risk increased sharply once a minimum temperature was reached.

Conclusions

The results from all three species suggest that infection risk may increase dramatically with small increases in temperature in areas at or near the currents limits of schistosome transmission. The effect of small increases in temperature in areas where schistosomiasis is currently found will depend both on current temperatures and on the species of snail acting as intermediate host(s) in the area. In most areas where B. pfeifferi is the host, infection risk is likely to decrease. In cooler areas where B. glabrata is the host, infection risk may increase slightly. In cooler areas where B. alexandrina is the host, infection risk may more than double with only 2°C increase in temperature. Our results show that it is crucial to consider the species of intermediate host when attempting to predict the effects of climate change on schistosomiasis.  相似文献   

18.
The objective of this study was to evaluate the combined effects of thermal acclimation and n-3 highly unsaturated fatty acids (n-3 HUFA) content of the food source on the aerobic capacities of fish in a thermal changing environment. The model used was the golden grey mullet Liza aurata, a species of high ecological importance in temperate coastal areas. For four months, fish were exposed to two food sources with contrasting n-3 HUFA contents (4.8% ecosapentaenoic acid EPA + docosahexaenoic acid DHA on the dry matter DM basis vs. 0.2% EPA+DHA on DM) combined with two acclimation temperatures (12°C vs. 20°C). The four experimental conditions were LH12, LH20, HH12 and HH20. Each group was then submitted to a thermal challenge consisting of successive exposures to five temperatures (9°C, 12°C, 16°C, 20°C, 24°C). At each temperature, the maximal and minimal metabolic rates, metabolic scope, and the maximum swimming speed were measured. Results showed that the cost of maintenance of basal metabolic activities was particularly higher when n-3 HUFA food content was low. Moreover, fish exposed to high acclimation temperature combined with a low n-3 HUFA dietary level (LH20) exhibited a higher aerobic scope, as well as a greater expenditure of energy to reach the same maximum swimming speed as other groups. This suggested a reduction of the amount of energy available to perform other physiological functions. This study is the first to show that the impact of lowering n-3 HUFA food content is exacerbated for fish previously acclimated to a warmer environment. It raises the question of the consequences of longer and warmer summers that have already been recorded and are still expected in temperate areas, as well as the pertinence of the lowering n-3 HUFA availability in the food web expected with global change, as a factor affecting marine organisms and communities.  相似文献   

19.
Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5°C and 32.5°C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes 33 hours at 17.5°C, and accelerates with increasing temperature to a low of 16 hours at 27.5°C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5°C and have drastically slowed development by 30°C. Despite ranging from 13 hours for D. erecta at 30°C to 46 hours for D. virilis at 17.5°C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has been tuned by natural selection as each species diverges.  相似文献   

20.
Paphiopedilum dianthum and P. micranthum are two endangered orchid species, with high ornamental and conservation values. They are sympatric species, but their leaf anatomical traits and flowering period have significant differences. However, it is unclear whether the differences in leaf structure of the two species will affect their adaptabilities to temperature. Here, we investigated the leaf photosynthetic, anatomical, and flowering traits of these two species at three sites with different temperatures (Kunming, 16.7 ± 0.2 °C; Puer, 17.7 ± 0.2 °C; Menglun, 23.3 ± 0.2 °C) in southwest China. Compared with those at Puer and Kunming, the values of light-saturated photosynthetic rate (Pmax), stomatal conductance (gs), leaf thickness (LT), and stomatal density (SD) in both species were lower at Menglun. The values of Pmax, gs, LT, adaxial cuticle thickness (CTad) and SD in P. dianthum were higher than those of P. micranthum at the three sites. Compared with P. dianthum, there were no flowering plants of P. micranthum at Menglun. These results indicated that both species were less resistance to high temperature, and P. dianthum had a stronger adaptability to high-temperature than P. micranthum. Our findings can provide valuable information for the conservation and cultivation of Paphiopedilum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号