首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In vivo analysis of Pim-1 deficiency.   总被引:8,自引:1,他引:7       下载免费PDF全文
The Pim-1 proto-oncogene encodes a highly conserved serine/threonine phosphokinase which is predominantly expressed in hematopoietic organs and gonads in mammals. Overexpression of Pim-1 predisposes to lymphomagenesis in mice. To develop a further understanding of Pim-1 in molecular terms, as well as in terms of its potential role in hematopoietic development, we have generated mice deficient in Pim-1 function. Pim-1-deficient mice are ostensibly normal, healthy and fertile. Detailed comparative analyses of the hematopoietic systems of the mutant mice and their wild-type littermates showed that they are indistinguishable for most of the parameters studied. Our analyses revealed one unexpected phenotype that correlated with the level of Pim-1 expression: Pim-1 deficiency correlated with a erythrocyte microcytosis, whereas overexpression of Pim-1 in E mu-Pim-1-transgenic mice resulted in erythrocyte macrocytosis. In order to confirm that the observed decrease in erythrocyte Mean Cell Volume (MCV) was attributable to the Pim-1 deficiency, we developed mice transgenic for a Pim-1 gene construct with its own promoter and showed that this transgene could restore the low erythrocyte Mean Cell Volume observed in the Pim-1-deficient mice to near wild-type levels. These results might be relevant to the observed involvement of the Pim-1 gene in mouse erythroleukemogenesis. The surprising lack of a readily observed phenotype in the lymphoid compartment of the Pim-1-deficient mice, suggests a heretofore unrecognized degree of in vivo functional redundancy of this highly conserved proto-oncogene.  相似文献   

5.
6.
Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudo-alpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.  相似文献   

7.
The ability of CD40 signaling to regulate B cell growth, survival, differentiation, and Ig class switching involves many changes in gene expression. Using cDNA expression arrays and Northern blotting, we found that CD40 signaling increased the mRNA levels for pim-1, a protooncogene that encodes a serine/threonine protein kinase. Subsequent experiments showed that CD40 engagement also increased both Pim-1 protein levels and Pim-1 kinase activity in B cells. We then investigated the signaling pathways by which CD40 regulates Pim-1 expression and found that CD40 up-regulates Pim-1 primarily via the activation of NF-kappaB. Inhibiting the activation of NF-kappaB, either by treating cells with a chemical inhibitor, BAY11-7082, or by inducibly expressing a superrepressor form of IkappaBalpha, significantly impaired the ability of CD40 to increase Pim-1 protein levels. Because Pim-1 expression is associated with cell proliferation and survival, we asked whether this correlated with the ability of CD40 signaling to prevent anti-IgM-induced growth arrest in the WEHI-231 murine B cell line, a model for Ag-induced clonal deletion. We found that the anti-IgM-induced growth arrest in WEHI-231 cells correlated with a substantial decrease in Pim-1 levels. In contrast, culturing WEHI-231 cells with either anti-CD40 Abs or with the B cell mitogen LPS, both of which prevent the anti-IgM-induced growth arrest, also prevented the rapid decline in Pim-1 levels. This suggests that Pim-1 could regulate the survival and proliferation of B cells.  相似文献   

8.
The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1-deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-X(L) protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1-overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1-deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.  相似文献   

9.
The Pim kinases are a family of three vertebrate protein serine/threonine kinases (Pim-1, -2, and -3) belonging to the CAMK (calmodulin-dependent protein kinase-related) group. Pim kinases are emerging as important mediators of cytokine signaling pathways in hematopoietic cells, and they contribute to the progression of certain leukemias and solid tumors. A number of cytoplasmic and nuclear proteins are phosphorylated by Pim kinases and may act as their effectors in normal physiology and in disease. Recent crystallographic studies of Pim-1 have identified unique structural features but have not provided insight into how the kinase recognizes its target substrates. Here, we have conducted peptide library screens to exhaustively determine the sequence specificity of active site-mediated phosphorylation by Pim-1 and Pim-3. We have identified the major site of Pim-1 autophosphorylation and find surprisingly that it maps to a novel site that diverges from its consensus phosphorylation motif. We have solved the crystal structure of Pim-1 bound to a high affinity peptide substrate in complexes with either the ATP analog AMP-PNP or the bisindolylmaleimide kinase inhibitor 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide HCl. These structures reveal an unanticipated mode of recognition for basic residues upstream of the phosphorylation site, distinct from that of other kinases with similar substrate specificity. The structures provide a rationale for the unusually high affinity of Pim kinases for peptide substrates and suggest a general mode for substrate binding to members of the CAMK group.  相似文献   

10.
Summary Viral leukemogenesis in mice is frequently initiated by proviral activation of a highly conserved cellular gene called Pim-1. Here we report the chromosomal localization of the human homologue by Southern blot analyses of DNAs obtained from human-rodent somatic cell hybrids. The single copy human homologue was assigned to the 6pter-q12 segment.  相似文献   

11.
The Pim-1 protein kinase plays an important role in regulating both cell growth and survival and enhancing transformation by multiple oncogenes. The ability of Pim-1 to regulate cell growth is mediated, in part, by the capacity of this protein kinase to control the levels of the p27, a protein that is a critical regulator of cyclin-dependent kinases that mediate cell cycle progression. To understand how Pim-1 is capable of regulating p27 protein levels, we focused our attention on the SCFSkp2 ubiquitin ligase complex that controls the rate of degradation of this protein. We found that expression of Pim-1 increases the level of Skp2 through direct binding and phosphorylation of multiple sites on this protein. Along with known Skp2 phosphorylation sites including Ser64 and Ser72, we have identified Thr417 as a unique Pim-1 phosphorylation target. Phosphorylation of Thr417 controls the stability of Skp2 and its ability to degrade p27. Additionally, we found that Pim-1 regulates the anaphase-promoting complex or cyclosome (APC/C complex) that mediates the ubiquitination of Skp2. Pim-1 phosphorylates Cdh1 and impairs binding of this protein to another APC/C complex member, CDC27. These modifications inhibit Skp2 from degradation. Marked increases in Skp2 caused by these mechanisms lower cellular p27 levels. Consistent with these observations, we show that Pim-1 is able to cooperate with Skp2 to signal S phase entry. Our data reveal a novel Pim-1 kinase-dependent signaling pathway that plays a crucial role in cell cycle regulation.  相似文献   

12.
The serine/threonine kinase Pim-1   总被引:10,自引:0,他引:10  
The human pim-1 gene encodes a serine/threonine kinase, which belongs to the group of calcium/calmodulin-regulated kinases (CAMK). It contains a characteristic kinase domain, a so-called ATP anchor and an active site. In mouse and human, two Pim-1 proteins are produced from the same gene by using an alternative upstream CUG initiation codon, a 44 kD and another, shorter 34 kD form that both contain the kinase domain. Expression of Pim-1 is widespread and ranges from the hematopoietic and lymphoid system to prostate, testis and oral epithelial cells. Two other proteins with significant sequence similarities exist, Pim-2 and Pim-3; both are also serine/threonine kinases and have largely overlapping functions. Pim-1 is able to phosphorylate different targets, most of which are involved in cell cycle progression or apoptosis. Pim-1 expression can be induced by several external stimuli in particular by a number of cytokines relevant in the immune system, which led to the labeling of Pim-1 as a "booster" for the immune response.  相似文献   

13.
14.
Activating mutations in the receptor tyrosine kinase FLT3 are one of the most frequent somatic mutations in acute myeloid leukemia (AML). Internal tandem duplications of the juxtamembrane region of FLT3 (FLT3/ITD) constitutively activate survival and proliferation pathways, and are associated with a poor prognosis in AML. We suspected that alteration of small non-coding microRNA (miRNA) expression in these leukemia cells is involved in the transformation process and used miRNA microarrays to determine the miRNA signature from total RNA harvested from FLT3/ITD expressing FDC-P1 cells (FD-FLT3/ITD). This revealed that a limited set of miRNAs appeared to be affected by expression of FLT3/ITD compared to the control group consisting of FDC-P1 parental cells transfected with an empty vector (FD-EV). Among differentially expressed miRNAs, we selected miR-16, miR-21 and miR-223 to validate the microarray data by quantitative real-time RT-PCR showing a high degree of correlation. We further analyzed miR-16 expression with FLT3 inhibitors in FLT3/ITD expressing cells. MiR-16 was found to be one of most significantly down-regulated miRNAs in FLT3/ITD expressing cells and was up-regulated upon FLT3 inhibition. The data suggests that miR-16 is acting as a tumour suppressor gene in FLT3/ITD-mediated leukemic transformation. Whilst miR-16 has been reported to target multiple mRNAs, computer models from public bioinformatic resources predicted a potential regulatory mechanism between miR-16 and Pim-1 mRNA. In support of this interaction, miR-16 was shown to suppress Pim-1 reporter gene expression. Further, our data demonstrated that over-expression of miR-16 mimics suppressed Pim-1 expression in FD-FLT3/ITD cells suggesting that increased miR-16 expression contributes to depletion of Pim-1 after FLT3 inhibition and that miR-16 repression may be associated with up-regulated Pim-1 in FLT3/ITD expressing cells.  相似文献   

15.
16.
Mutation of the p53 gene is a common event during tumor pathogenesis. Other mechanisms, such as mdm2 amplification, provide alternative routes through which dysfunction of the p53 pathway is promoted. Here, we address the hypothesis that elevated expression of pim oncogenes might suppress p53 by regulating Mdm2. At a physiological level, we show that endogenous Pim-1 and Pim-2 interact with endogenous Mdm2. Additionally, the Pim kinases phosphorylate Mdm2 in vitro and in cultured cells at Ser(166) and Ser(186), two previously identified targets of other signaling pathways, including Akt. Surprisingly, at high levels of Pim expression, as would occur in tumors, active, but not inactive, Pim-1 or Pim-2 blocks the degradation of both p53 and Mdm2 in a manner that is independent of Mdm2 phosphorylation, leading to increased p53 levels and, proportionately, p53-dependent transactivation. Additionally, Pim-1 induces endogenous ARF, p53, Mdm2, and p21 in primary murine embryo fibroblasts and stimulates senescence-associated beta-galactosidase levels, consistent with the induction of senescence. Immunohistochemical analysis of a cohort of 33 human mantle cell lymphomas shows that elevated expression of Pim-1 occurs in 42% of cases, with elevated Pim-2 occurring in 9% of cases, all of which also express Pim-1. Notably, elevated Pim-1 correlates with elevated Mdm2 in MCL with a p value of 0.003. Taken together, our data are consistent with the idea that Pim normally interacts with the p53 pathway but, when expressed at pathological levels, behaves as a classic dominant oncogene that stimulates a protective response through induction of the p53 pathway.  相似文献   

17.
Although anoxic preconditioning (APC) in the myocardium has been investigated for many years, its physiological mechanism is still not completely understood. Increasing evidence indicates that transiently increased resistance to ischemic damage following APC is dependent on de novo proteins synthesis. However, the key effector pathway(s) associated with APC still remains unclear. The proto-oncogene Pim kinase belongs to a serine/threoine protein kinase family, consists of Pim-1, Pim-2 and Pim-3 and has been implicated in stimulating cell growth and inhibiting cell apoptosis. Therefore we assumed that Pim-3 expression might be aberrantly induced in cardiomyocytes that were subjected to anoxia/reoxygenation (A/R) injury and that Pim-3 might also contribute to cardio-protection after APC. To address this hypothesis, we cloned a Pim-3 expression vector, transfected it into rat cardiomyocytes, and examined Pim-3 expression in rat cardiomyocytes that were subjected to A/R injury. Moreover, we studied the role of three major MAPK pathways, e.g. p38 MAPK, JNK, and ERK1/2, in order to evaluate the molecular mechanism underlying Pim-3 up-regulation and A/R induced cardiomyocyte injury. Our experiments showed that APC induced an up-regulation of Pim-3 and the transfection of Pim-3 gene into the cardiomyocytes attenuated A/R injury. The inhibition of p38 MAPK by SB203580 abolished both the Pim-3 up-regulation and the cardio-protection provided by APC. Overall, these results suggest that APC could act to protect the heart from A/R injury with cooperation from the proto-oncogene Pim-3; in addition, it up-regulates Pim-3 expression through a p38 MAPK signaling pathway.  相似文献   

18.
Pim-1 kinase, a serine/threonine protein kinase encoded by the pim proto-oncogene, is involved in several signalling pathways such as the regulation of cell cycle progression and apoptosis. Many cancer types show high expression levels of Pim kinases and particularly Pim-1 has been linked to the initiation and progression of the malignant phenotype. In several cancer tissues somatic Pim-1 mutants have been identified. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of Pim-1 kinase. We expressed and purified some of the mutants of Pim-1 kinase that are expressed in cancer tissues and reported in the single nucleotide polymorphisms database. The point mutations in the variants significantly affect the conformation of the native state of Pim-1. All the mutants, expressed as soluble recombinant proteins, show a decreased thermal and thermodynamic stability and a lower activation energy values for kinase activity. The decreased stability accompanied by an increased flexibility suggests that Pim-1 variants may be involved in a wider network of protein interactions. All mutants bound ATP and ATP mimetic inhibitors with comparable IC50 values suggesting that the studied Pim-1 kinase mutants can be efficiently targeted with inhibitors developed for the wild type protein.  相似文献   

19.
20.
After rearrangement of the T-cell receptor (TCR) beta-locus, early CD4(-)/CD8(-) double negative (DN) thymic T-cells undergo a process termed 'beta-selection' that allows the preferential expansion of cells with a functional TCR beta-chain. This process leads to the formation of a rapidly cycling subset of DN cells that subsequently develop into CD4(+)/CD8(+) double positive (DP) cells. Using transgenic mice that constitutively express the zinc finger protein Gfi-1 and the serine/threonine kinase Pim-1, we found that the levels of both proteins are important for the correct development of DP cells from DN precursors at the stage where 'beta-selection' occurs. Analysis of the CD25(+)/CD44(-,lo) DN subpopulation from these animals revealed that Gfi-1 inhibits and Pim-1 promotes the development of larger beta-selected cycling cells ('L subset') from smaller resting cells ('E subset') within this subpopulation. We conclude from our data that both proteins, Pim-1 and Gfi-1, participate in the regulation of beta-selection-associated pre-T-cell differentiation in opposite directions and that the ratio of both proteins is important for pre-T-cells to pass the 'E' to 'L' transition correctly during beta-selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号