首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Using a well documented ex vivo system consisting of rodent cerebellar granule cells (CGCs) the activation of caspases 3 and 6 during apoptosis induced by withdrawal of trophic support was analyzed. At the time of deprivation, the addition of the irreversible, broad-spectrum caspase inhibitor zVADfmk or the cell permeable, caspase 6 inhibitor CP-VEID-cho can transiently suppress the appearance of apoptosis, including the early appearance of DNA fragmentation. Using immunoblotting and fluorogenic peptide assays we observe deprivation-induced activation of caspases 3 and 6, but not caspase 9. Furthermore, active caspase 6 is capable of processing and activating procaspase 3 in cellular extracts prepared from non-apoptotic CGCs, whereas caspase 3 failed to activate caspase 6. In consonant with this, the cell permeable caspase 6 inhibitor prevented deprivation-induced caspase 3 activation whereas a cell permeable caspase 3 inhibitor, CP-DEVD-cho, had no effect on caspase 6 activation. This would indicate that caspase 6 is a significant inducer of the early caspase 3 activity in apoptotic CGCs.  相似文献   

2.
Amstad PA  Yu G  Johnson GL  Lee BW  Dhawan S  Phelps DJ 《BioTechniques》2001,31(3):608-10, 612, 614, passim
Apoptosis is dependent on the activation of a group of proteolytic enzymes called caspases. Caspase activation can be detected by immunoblotting using caspase-specific antibodies or by caspase activity measurement employing pro-fluorescent substrates that become fluorescent upon cleavage by the caspase. Most of these methods require the preparation of cell extracts and, therefore, are not suitable for the detection of active caspases within the living cell. Using FAM-VAD-FMK, we have developed a simple and sensitive assay for the detection of caspase activity in living cells. FAM-VAD-FMK is a carboxyfluorescein (FAM) derivative of benzyloxycarbonyl-valine-alanine-aspartic acid-fluoromethyl ketone (zVAD-FMK), which is a potent broad-spectrum inhibitor of caspases. FAM-VAD-FMK enters the cell and irreversibly binds to activated caspases. Cells containing bound FAM-VAD-FMK can be analyzed by flow cytometry, fluorescence microscopy, or a fluorescence plate reader. Using FAM-VAD-FMK, we have measured caspase activation in live non-adherent and adherent cells. We show that FAM-VAD-FMK labeled Jurkat and HeLa cells that had undergone apoptosis following treatment with camptothecin or staurosporine. Non-stimulated negative control cells were not stained. Pretreatment with the general caspase inhibitor zVAD-FMK blocked caspase-specific staining in induced Jurkat and HeLa cells. Pretreatment of staurosporine-induced Jurkat cells with FAM-VAD-FMK inhibited affinity labeling of caspase-3, -6, and -7, blocked caspase-specific cell staining, and led to the inhibition of apoptosis. In contrast, the fluorescent control inhibitor FAM-FA-FMK had no effect. Measurement of caspase activation in 96-well plates showed a 3- to 5-fold increase in FAM-fluorescence in staurosporine-treated cells compared to control cells. In summary, we show that FAM-VAD-FMK is a versatile and specific tool for detecting activated caspases in living cells.  相似文献   

3.
Activation of caspases is the key event of apoptosis and different approaches were developed to assay it. To detect their activation in situ, we applied fluorochrome labeled inhibitors of caspases (FLICA) as affinity labels of active centers of these enzymes. The FLICA ligands are fluorescein or sulforhodamine conjugated peptide-fluoromethyl ketones that covalently bind to enzymatic centers of caspases with 1:1 stoichiometry. The specificity of FLICA towards individual caspases is provided by the peptide sequence of amino acids. Exposure of live cells to FLICA results in uptake of these ligands and their binding to activated caspases; unbound FLICA is removed by cell rinse. Cells labeled with FLICA can be examined by fluorescence microscopy or subjected to quantitative analysis by cytometry. Intracellular binding sites of FLICA are consistent with known localization of caspases. Covalent binding of FLICA allowed us to identify the labeled proteins by immunoblotting: the proteins that bound individual FLICAs had molecular weight between 17 and 22 kDa, which corresponds to large subunits of the caspases. Detection of caspases activation by FLICA can be combined with other markers of apoptosis or cell cycle for multiparametric analysis. Because FLICA are caspase inhibitors they arrest the process of apoptosis preventing cell disintegration. The stathmo-apoptotic method was developed, therefore, that allows one to assay cumulative apoptotic index over long period of time and estimate the rate of cell entry into apoptosis for large cell populations. FLICA offers a rapid and convenient assay of caspases activation and can also be used to accurately estimate the incidence of apoptosis.  相似文献   

4.
The synthesis of oligopeptide building blocks for the introduction of nonluminescent and luminescent lanthanide(III) chelates to the oligopeptide structure on the solid phase is described. The oligopeptide conjugates synthesized were used in DELFIA-based receptor binding assay (motilin) as well as in LANCE time-resolved fluorescence quenching assay (caspase-3).  相似文献   

5.
The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP) family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117–214 and 362–395 within sox11 as well as a nuclear localization signal (NLS) all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.  相似文献   

6.
Role of the executioner caspases during lens development   总被引:2,自引:0,他引:2  
  相似文献   

7.
The use of europium chelates as labels in immunoassays and their sensitive quantitation based on time-resolved fluorescence is reviewed. The technique is applied on competitive solid-phase immunoassays for direct determination of progesterone and estradiol in serum samples. Both antigen- and antibody-labelled competitive assays are described. The nonisotopic label technology, which provides a very high specific activity, as well as the antibody-labelled competitive assays, present several advantages in the assay of haptens as e.g. steroids. As the optimal sensitivity of competitive methods is not limited by the specific activity of the label the steroid assays which employ europium chelates as labels do not show any marked increase in sensitivity as compared to that achieved by using 125I. The potential sensitivity provided by the high specific activity of the label is optimally utilized in noncompetitive immunometric assays.  相似文献   

8.
Caspase-1 selective inhibitors are novel therapeutic agents for inflammatory diseases. Selectivity assays for caspases can be initiated with purified enzyme, making these assays very costly and time consuming. Therefore, there is a need to develop a fast and reliable cell-based assay, which can be used for the selectivity screening of multiple caspases in a biologically relevant context in a single assay. In this study, we have developed an assay in which DNA fragmentation, a hallmark of apoptosis, of Jurkat cell line was examined post induction with etoposide in the presence or absence of inhibitors of caspases 1, 3, 8, 9 and pan-caspase inhibitors. We observed that caspases-3, -8, -9 and pan caspase inhibitors resulted in significant inhibition of etoposide-induced DNA fragmentation. However, caspase-1 specific inhibitor failed to prevent DNA fragmentation, suggesting that either caspases belonging to caspase-1 family (1, 4 and 5) are not present in the Jurkat cells or might not be involved in the etoposide-induced DNA fragmentation. Since the inhibition of caspases 3, 8 and 9 is accompanied by the down regulation of the activity of a cascade of caspases (caspases 2, 6, 7, 9 and 10), selectivity of caspase-I inhibitors can be ascertained for the above panel (caspases 2, 6, 7, 8, 9 and 10) of caspases from this single assay.  相似文献   

9.
Caspase activation and proteolytic cleavage of specific target proteins represents an integral step in the pathway leading to the apoptotic death of cells. Analysis of caspase activity in intact cells, however, has been generally limited to the measurement of end-point biochemical and morphological markers of apoptosis. In an effort to develop a strategy with which to monitor caspase activity, early in the cell death cascade and in real-time, we have generated cell lines that overexpress recombinant GFP-based caspase substrates that display a quantifiable change in their spectral properties when cleaved by group II caspases. Specifically, tandem GFP substrates linked by a caspase-sensitive cleavage site show diminished fluorescence resonance energy transfer (FRET), as a consequence of cleavage, due to physical separation of the GFP moieties in apoptotic cells. We have evaluated the influence of different caspase-sensitive linkers on both FRET efficiency and cleavage by caspase-3. We also demonstrate that caspase activity as well as inhibition by pharmacological agents can be monitored, with minimal manipulation, in intact adherent cells seeded in a 96-well cell culture dish. Finally, we have adapted this technology to a high throughput screening platform to identify novel small molecule and cell permeable inhibitors of apoptosis. Based on a biochemical analysis of the compounds identified it is clear that this assay can be used to detect drugs which inhibit caspases directly as well as those which target upstream components of the caspase cascade.  相似文献   

10.
The specificity of 10 recombinant caspases was investigated using a set of competitive substrates. The caspase activity was determined by high-performance liquid chromatography using highly fluorescent peptides containing 2-aminoacridone (AMAC) as reporting group. The sequences of the used substrates were designed according to literature data for being specific for 10 of the caspases. The described approach allows the concentration changes of several substrates to be monitored simultaneously in a single sample. Because the substrates are in competitive conditions, the preferences of particular caspases to given peptide sequences are most clearly demonstrated. In the studied competitive assay conditions, all tested caspases except caspase 2 exhibit activity toward more than one substrate. None of the used peptide sequences was found to be highly specific for a defined caspase. The results obtained indicate that there is well-expressed group specificity among the caspases.  相似文献   

11.
PIK3CA, coding a catalytic subunit of PI3K p110α, is frequently mutated in cancer. In previous studies, p110α with hotspot mutations such as E545K and H1047R were shown to be gain-of-function mutations. However, quantitative evaluation of these mutants was not well established. Recently, a new method for measuring PI3K activity using homogeneous time-resolved fluorescence (HTRF) has been developed. Using this method, we constructed a quantitative evaluation system for PI3K activity. Serial dilutions of standard PIP3 were subjected to the PI3K-HTRF assay in order to establish a regression line for calibration. The recombinant FLAG-tagged p110α proteins were engineered together with a regulatory subunit p85α in human embryonic kidney 293T cells. Anti-FLAG-Ig immunoprecipitates were then subjected to the assay, which enabled us to quantitatively evaluate the activities of hotspot mutants of p110α. We believe this method will also be applicable to the evaluation of p110α having uncharacterized mutations found in cancer.  相似文献   

12.
We have developed a novel instrument platform, GenomEra, for small-scale analysis of nucleic acids. The platform combines a rapid thermal cycler, an integrated time-resolved fluorescence measurement unit, and user-friendly software for the analysis of results. Disposable low-cost plastic reaction vessels are designed specifically for the instrument and contain all of the assay-specific reagents in dry form. The appropriate assay protocol is specified on barcodes printed under the vessels and is automatically initiated by the software. Detection is based on the use of sequence-specific probes labeled with intrinsically fluorescent europium or terbium chelates and complementary quencher probes, which enable sensitive, homogeneous closed-tube assays without the risk of carryover contamination. The detection limit of the instrument (background + 3 SD) is approximately 20 pmol/L for both chelates with a dynamic range of nearly four orders of magnitude. The functionality of the platform is demonstrated with a dual-label homogeneous polymerase chain reaction (PCR) assay for the detection of Salmonella using a Magda CA Salmonella assay kit. An internal amplification control is included in each reaction to eliminate false negative results caused by PCR inhibition. Qualitative assay results are automatically interpreted by the software and are available 45 min after sample addition.  相似文献   

13.
The control of cell death is an intricate process involving a multitude of intracellular modulators. Among these molecules, the caspases have a central role and have become an interesting group of enzymes in the current pharmaceutical industry. We have developed a novel dual-step fluorescence energy transfer-based separation-free assay method for the primary screening of caspase-3 inhibitors in vitro. This method relies on fluorescent europium(III)-chelate-doped nanoparticle donors coated with streptavidin in conjunction with a dual-labeled (N-terminal Alexa Fluor 680 fluorescent acceptor and C-terminal BlackBerry Quencher 650) caspase-3-specific peptide substrate modified with a biotinyl moiety. In the assay, the nanoparticle donor excites the fluorescent acceptor, whose emission is monitored with time-resolved measurements. The intensity of the acceptor reflects the activity of the enzyme because the intensity is controlled by the proximity of the quencher. Owing to the dual-step fluorescence resonance energy transfer, this method enables a sensitized fluorescence signal directly proportional to the extent of enzymatic activity with relatively background fluorescence-free measurements in the event of complete enzyme inhibition. The generic nanoparticle donors further promote versatility and cost-efficiency of the method. The performance evaluated as the inhibitor (Z-DEVD-FMK) dose-response curve (IC(50) value of approximately 12 nM) was in good agreement with that of the recent methods found in literature. This assay serves as a model application proving the feasibility of the europium-chelate-doped nanoparticle labels in a homogeneous assay for proteolytic activity.  相似文献   

14.
A new structural class of broad spectrum caspase inhibitors was optimized for its activity against caspases 1, 3, 6, 7, and 8. The most potent compound had low nanomolar broad spectrum activity, in particular, single digit nanomolar inhibitory activity against caspase 8.  相似文献   

15.
Interferon-gamma (IFN-gamma) induces various apoptosis-related proteins, including Fas antigen (Fas) in keratinocytes. Ultraviolet B (UVB) irradiation produces "sunburn cells," a specific type of apoptosis. Previously, we reported that IFN-gamma augments Fas-dependent apoptosis of SV40-transformed human keratinocytes (SVHK cells). Caspases are a new class of cysteine proteinases that play an important role in apoptosis. We investigated the mechanism of UVB-induced apoptosis by examining activation of the caspase cascade. UVB irradiation of SVHK cells increased the activities of caspases 1, 3, and 8, which were detected at 3 h, and peak activities occurred at 6 h. Pretreatment of SVHK cells with IFN-gamma significantly increased the activity of caspases 1, 3, and 8. UVB-induced caspase 8 stimulation was significantly suppressed only by caspase 8 inhibitor, while inhibitors of caspases 1, 3, and 8 significantly suppressed UVB-induced caspase 1 stimulation. Caspase 3 and 8 inhibitors, but not caspase 1 inhibitor, significantly suppressed UVB-induced caspase 3 activity, suggesting sequential activation of caspases 8, 3, and 1 in UVB-irradiated SVHK cells. Cross-linking and immunoprecipitation analyses showed multimerization of Fas antigen following UVB irradiation of SVHK cells. Pretreatment of SVHK cells with IFN-gamma significantly augmented UVB-induced apoptosis that was accompanied by increased Fas expression. The susceptibility to UVB-induced apoptosis was also increased in Fas-transfected SVHK cells (F2 cells). Neutralizing anti-Fas antibody significantly suppressed caspase activation and Fas-dependent apoptosis of SVHK cells and F2 cells. In contrast, UVB-induced caspase activation and apoptosis were not inhibited by neutralizing anti-Fas antibody in both cell lines. Our results suggest that UVB directly activates Fas and subsequent caspase cascade resulting in apoptosis of SVHK cells. Furthermore, the expression level of Fas antigen in keratinocytes influenced their susceptibility to UVB-induced apoptosis.  相似文献   

16.
Micro Arrayed Compound Screening (microARCS) is a miniaturized ultra-high-throughput screening platform developed at Abbott Laboratories. In this format, 8,640 discrete compounds are spotted and dried onto a polystyrene sheet, which has the same footprint as a 96-well plate. A homogeneous time-resolved fluorescence assay format (LANCE) was applied to identify the inhibitors of caspase-3 using a peptide substrate labeled with a fluorescent europium chelate and a dabcyl quencher. The caspase-3 enzyme was cast into a thin agarose gel, which was placed on a sheet containing test compounds. A second gel containing caspase substrate was then laid above the enzyme gel to initiate the reaction. Caspase-3 cleaves the substrate and separates the europium from the quencher, giving rise to a time-resolved fluorescent signal, which was detected using a ViewLux charge-coupled device imaging system. Potential inhibitors of caspase-3 appeared as dark spots on a bright fluorescent background. Results from the microARCS assay format were compared to those from a conventional 96-well plate-screening format.  相似文献   

17.
18.
As a continuation of our SAR studies of dipeptidyl aspartyl-fmk as caspase inhibitors, we explored the replacement of the P(2) amino acid by a 2-aminoaryl acid or other non-natural amino acids. Several of these compounds, such as 6l and 6p, were found to have good activities with inhibition potencies of around 100 nM in a caspase-3 enzyme assay. EP1113, Z-Val-(2-aminobenzoyl)-Asp-fmk (9b), is identified as a potent broad-spectrum caspase inhibitor with IC(50) values of 6-60 nM in different caspases. EP1113 also has good activity in a cell apoptosis protection assay.  相似文献   

19.
Phospholipase C beta (PLC-beta)-coupled G protein-coupled receptor (GPCR) activities traditionally are assessed by measuring Ca2+ triggered by D-myo-inositol 1,4,5-trisphosphate (IP3), a PLC-beta hydrolysis product, or by measuring the production of inositol phosphate using cumbersome radioactive assays. A specific detection of IP3 production was also established using IP3 binding proteins. The short lifetime of IP3 makes this detection very challenging in measuring GPCR responses. Indeed, this IP3 rapidly enters the metabolic inositol phosphate cascade. It has been known for decades that lithium chloride (LiCl) leads to D-myo-inositol 1-phosphate accumulation on GPCR activation by inhibiting inositol monophosphatase, the final enzyme of the IP3 metabolic cascade. We show here that IP1 can be used as a surrogate of IP3 to monitor GPCR activation. We developed a novel homogeneous time-resolved fluorescence (HTRF) assay that correlates perfectly with existing methods and is easily amenable to high-throughput screening. The IP-One assay was validated on various GPCR models. It has the advantage over the traditional Ca2+ assay of allowing the measurement of inverse agonist activity as well as the analysis of PLC-beta activity in any nontransfected primary cultures. Finally, the high assay specificity for D-myo-inositol 1 monophosphate (IP1(1)) opens new possibilities in developing selective assays to study the functional roles of the various isoforms of inositol phosphates.  相似文献   

20.
Platelets express, among others, initiator caspase 9 and effector caspase 3. Upon activation by physiological agonists, calcium ionophores or under shear stress they might develop apoptotic events. Although it is well known that the cytoskeletal network plays a crucial role in apoptosis, the relationship between caspases 3 and 9 and the cytoskeleton is poorly understood. Here we demonstrate that the physiological agonist thrombin is able to induce activation of caspases 3 and 9 in human platelets and significantly increases the amount in the cytoskeleton of the active forms of both caspases and the procaspases 3 and 9. After stimulation with thrombin the amount of active caspases 3 and 9 in the cytosolic and cytoskeletal fractions were significantly reduced in Ro-31-8220-treated cells, which demonstrates that caspases activation and association with the cytoskeleton needs the contribution of PKC. Inhibition of actin polymerization by cytochalasin D inhibits translocation and activation of both caspases, suggesting that thrombin stimulates caspase 3 and 9 activation and association with the reorganizing actin cytoskeleton. Finally, our results show that inhibition of thrombin-induced caspase activation has no effect on their translocation to the cytoskeleton although impairment of thrombin-evoked caspase translocation has negative effects on caspase activity, suggesting that translocation to the cytoskeleton might be important for caspase activation by thrombin in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号