首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.  相似文献   

2.
In order to address the problem of when heterogeneity arises within premigratory and early migratory neural crest cell populations, mouse monoclonal antibodies were raised against quail premigratory neural crest. Due to the limited availability of immunogen an intrasplenic route for immunization was used. Three monoclonal antibodies (referred to as LH2D4, LH5D3 and LH6C2) were subsequently isolated which recognized subpopulations in 24 h cultures of both quail and chick mesencephalic and trunk neural crest in immunocytochemical studies. Subsequent investigations using a range of six antibodies, including LH2D4, LH5D3 and LH6C2, showed that population heterogeneity (which was not cell cycle related) could be detected as early as 15 h following mesencephalic crest explantation, a stage at which all the neural crest cells were morphologically identical. However, premigratory neural crest from the same axial level of origin was homogeneous, as judged by immunoreactivity patterns with these antibodies. Significant differences were found in the proportion of immunoreactive cells between populations of mesencephalic and trunk neural crest cultures. Double immunofluorescence studies revealed the existence of at least four separate cell populations within individual crest cultures, each identified by their unique antibody reactivity pattern, thus providing some insight into the underlying complexity of subpopulation composition within the neural crest. Immunocytochemical studies on quail embryos from stages 7-22 showed that the epitopes detected by LH2D4, LH5D3 and LH6C2 were not necessarily confined to the neural crest or to cells of crest derivation. All three epitopes displayed a spatiotemporal regulation in their expression during early avian ontogeny. Since the differential epitope expression described in this investigation was detectable as early as 15 h after premigratory neural crest explantation, took place in vitro in the absence of any other cell type and changed progressively with time, we conclude that a certain degree of population heterogeneity can be generated very early in neural crest ontogeny and independently of the tissue interactions that normally ensue in vivo.  相似文献   

3.
Developmental potential of avian trunk neural crest cells in situ   总被引:4,自引:0,他引:4  
M Bronner-Fraser  S Fraser 《Neuron》1989,3(6):755-766
To analyze the developmental potential of individual neural crest cells or their precursors, we have microinjected a vital dye, lysinated rhodamine dextran (LRD), into single cells in the dorsal neural tube. The phenotypes of the descendants that inherited the LRD from the injected cells were evaluated based upon their position, morphology, and neurofilament expression. Individual neural crest cells labeled before or as they emigrated from the neural tube gave rise to both sensory and sympathetic neurons as well as nonneuronal cells, some of which had the morphological characteristics of Schwann cells or pigment cells. In numerous cases, the descendants of a single cell included both neural crest- and neural tube-derived neurons, suggesting that some cells of the peripheral and central nervous systems share a common lineage. Our data demonstrate definitively that both emigrating and premigratory trunk neural crest cells can be multipotent, giving rise not only to cells in multiple neural crest derivatives, but also to both neuronal and nonneuronal elements within a given derivative.  相似文献   

4.
Appearance of nerve growth factor receptors on cultured neural crest cells   总被引:2,自引:0,他引:2  
Light microscopic radioautography of differentiating quail neural crest cultures (1 to 2 weeks after explanation) incubated with Iodine-125-labeled nerve growth factor (125I-NGF) revealed that approximately 35% of the cells bound NGF. The binding was specific and saturable; it was blocked by an excess of nonradioactive NGF, and was not detected following incubation with biologically inactive 125I-NGF. In addition, the binding did not appear to be blocked or diminished by insulin. Cell cultures prepared from somites or notochord showed no specific binding of 125I-NGF. Melanocytes comprised approximately 10% of the cell population in these cultures and appeared to be unlabeled. The subpopulation of cells with NGF receptors that were morphologically similar to other non-melanocyte unlabeled cells present in the neural crest cultures are probably the targets of the factor during differentiation and development. In contrast, there was no evidence of 125I-NGF binding by premigratory neural crest (adherent to the isolated neural tube) or by early migratory neural crest cells (24 hr after explantation). Both of these types of neural crest cells are relatively undifferentiated. The cells of the neural tube were also unlabeled. The binding of 125I-NGF to differentiating neural crest cells was not noticeably diminished by a brief pretreatment with trypsin or Dispase, enzymes used in the isolation of neural tubes. Hence, the absence of NGF receptors on premigratory neural crest and early migratory neural crest cultures was not due to enzymatic alterations of the receptor. It seems, therefore, that receptors for NGF appear on neural crest cells during the time when these cells are acquiring their phenotypic characteristics.  相似文献   

5.
It has been proposed that, in higher vertebrates, the onset of neural crest cell migration from the neural tube involves spatially and temporally coordinated changes in cellular adhesiveness that are under the control of external signals released in the extracellular milieu by neighboring tissues. In the present study, we have analyzed the dynamics of changes in cell-substratum adhesiveness during crest cell emigration and searched for regulatory cues using an in vitro model system. This model is based on the fact that, in vivo, crest cell dispersion occurs gradually along a rostrocaudal wave, allowing us to explant portions of the neural axis, termed migratory and premigratory levels, that differ in the time in culture at which neural crest cells initiate migration and in the locomotory behavior of the cells. We found that neural crest cell emigration is not triggered by the main extracellular matrix molecules present in the migratory pathways, as none of these molecules could abolish the intrinsic difference in the timing of emigration between the different axial levels. Using an in vitro adhesion assay, we found that presumptive neural crest cells from premigratory level explants gradually acquired the ability to respond to extracellular matrix material with time in culture, suggesting that acquisition of appropriate, functional integrin receptors was a necessary step for migration. Finally, we showed that members of the transforming growth factor-beta family reduced in a dose-dependent manner the delay of neural crest cell emigration from premigratory level explants and were able to increase significantly the substratum-adhesion properties of crest cells. Our results suggest that acquisition of substratum adhesion by presumptive neural crest cells is a key event during their dispersion from the neural tube in vitro, and that members of the transforming growth factor-beta family may act as potent inducers of crest cell emigration, possibly by increasing the substratum adhesion of the cells.  相似文献   

6.
7.
A hybrid toxin composed of ricin A chain and a monoclonal antibody directed against the rat nerve growth factor (NGF) receptor (192-IgG) was prepared using the heterobifunctional cross-linking agent N-succinimidyl-3-(2-pyridyldithio)-propionate and purified by affinity chromatography. Characterization studies showed that the hybrid, 192-s-s-A, displaced bound 125I-labeled 192-IgG from rat superior cervical ganglion (SCG) membranes with an IC50 3-5 times lower than that of unconjugated 192-IgG. When incubated with cultured rat SCG neurons, 192-s-s-A inhibited protein synthesis in a concentration-dependent fashion. The effect of 192-s-s-A on these neurons was reversed by coincubation with an excess of 192-IgG. The IC50 of 192-s-s-A on protein synthesis in rat SCG neurons was 4 nM. Intact ricin and ricin A chain inhibited protein synthesis in these neurons with IC50 values of 5 pM and 500 nM, respectively. The 192-s-s-A hybrid had no effect on mouse SCG neurons or a human melanoma cell line known to have NGF receptors. This is consistent with the finding that 192-IgG recognizes only the rat NGF receptor. Also, 192-s-s-A did not inhibit protein synthesis in primary cultures of rat skeletal muscle or Vero cells, which do not have cell surface receptors for NGF. 192-s-s-A was able to inhibit protein synthesis in PC12 cells but the potency was 10-100 times less in these cells compared to rat SCG neurons. Ricin and A chain were also 10-100 times less potent in PC12 cells than neurons. Rat SCG neurons exposed to 192-s-s-A lost their refractile appearance under phase-contrast optics, showed granular degeneration of neurites, and died. Thus the decreased protein synthesis caused by the hybrid toxin correlated with the morphological destruction of the neurons. 192-s-s-A represents a potentially powerful tool by which to selectively destroy NGF receptor-bearing cells in vitro. The hybrid toxin may prove useful as an in vivo toxin.  相似文献   

8.
Cranial and trunk neural crest cells produce different derivatives in vitro. Cranial neural crest cultures produce large numbers of cells expressing fibronectin (FN) and procollagen I (PCol I) immunoreactivities, two markers expressed by mesenchymal derivatives in vivo. Trunk neural crest cultures produce relatively few FN or PCol I immunoreactive cells, but they produce greater numbers of melanocytes than do cranial cultures. Treatment of trunk neural crest cultures with transforming growth factor-β1 (TGF-β1) stimulates them to express both FN and PCol I immunoreactivities at levels comparable to those normally seen in cranial cultures and simultaneously decreases their expression of melanin. These observations raised the possibility that endogenous TGF-β is involved in specifying differences in the phenotypes expressed by cranial and trunk neural crest cells in vitro. Consistent with this idea, we found that treatment of cranial cultures with a function-blocking TGF-β antiserum inhibits the development of FN immunoreactive cells and stimulates the development of melanocytes. Cranial and trunk neural crest cells express approximately equal levels of TGF-β mRNA. However, trunk neural crest cells are significantly less sensitive to the FN-inducing effect of TGF-β1 than are cranial neural crest cells. These results suggest that: (1) endogenous TGF-β is required for the expression of mesenchymal phenotypes by cranial neural crest cells, and (2) differences in the phenotypes expressed by cranial and trunk neural crest cells in vitro result in part from differences in the sensitivities of these two cell populations to TGF-β. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
We have demonstrated in vitro and in vivo the specific binding of a monoclonal antibody to the rat nerve growth factor (NGF) receptor. Previous work had shown that this antibody, designated 192-IgG, does not compete with NGF for binding to the NGF receptor of PC12 cells, but instead interacts with the receptor to increase NGF binding to PC12 cells (Chandler, C. E., L. M. Parsons, M. Hosang, and E. M. Shooter, 1984, J. Biol. Chem., 259:6882-6889). In the present study, a solid-phase separation assay verified the specific formation of a ternary complex of 192-IgG, the NGF receptor, and NGF: 125I-labeled 192-IgG precipitated from solution only when incubated with both solubilized NGF receptor and NGF covalently linked to a solid phase (Sepharose 4B). Filtration assays using plasma membrane preparations of various tissues showed strict correlation of 125I-192-IgG and 125I-labeled NGF binding; only membranes obtained from superior cervical ganglion bound significant amounts of the monoclonal antibody and NGF. Injection of 125I-192-IgG into the rat anterior eye chamber led to accumulation of intact antibody molecules in the ipsilateral superior cervical ganglion, indicating retrograde axonal transport of 125I-192-IgG from the neuronal termini, located at the iris, to the cell bodies situated in the ganglion. The time course and saturation characteristics of 125I-192-IgG retrograde transport were very similar to those previously reported for 125I-NGF transport, indicating that 192-IgG can be internalized and transported by the same mechanisms as is NGF. Consistent with results of the in vitro binding assays, 192-IgG and NGF failed to compete for retrograde transport and were actually co-transported. Retrograde axonal transport of 192-IgG appears to be species specific, since 125I-192-IgG was transported in the rat, but not in mice, gerbils, hamsters, or guinea pigs. These results establish monoclonal antibody 192-IgG as a specific probe for the rat NGF receptor in vitro and in vivo.  相似文献   

10.
11.
The neural crest of vertebrate embryos has been used to elucidate steps involved in early embryonic cellular processes such as differentiation and migration. Neural crest cells form a ridge along the dorsal midline and subsequently they migrate throughout the embryo and differentiate into a wide variety of cell types. Intrinsic factors and environmental cues distributed along the neural tube, along the migratory pathways, and/or at the location of arrest influence the fate of neural crest cells. Although premigratory cells of the cranial and trunk neural crest exhibit differences in their differentiation potentials, premigratory trunk neural crest cells are generally assumed to have equivalent developmental potentials. Axolotl neural crest cells from different regions of origin, different stages of development, and challenged with different culture media have been analyzed for differentiation preferences pertaining to the pigment cell lineages. We report region-dependent differentiation of chromatophores from trunk neural crest at two developmental stages. Also, dosage with guanosine produces region-specific influences on the production of xanthophores from wild-type embryos. Our results support the hypothesis that spatial and temporal differences among premigratory trunk neural crest cells found along the anteroposterior axis influence developmental potentials and diminish the equivalency of axolotl neural crest cells.  相似文献   

12.
In this review, we describe the results of recent experiments designed to investigate various aspects of neural crest cell lineage and migration. We have analyzed the lineage of individual premigratory neural crest cells by injecting a fluorescent lineage tracer dye, lysinated fluorescein dextran, into cells within the dorsal neural tube. Individual clones contained cells that were located in very diverse sites consistent with their being sensory neurons, prepigment cells, Schwann cells, adrenergic cells, and neural tube cells. These results suggest that some neural crest cells in the trunk and cranial regions are multipotent prior to their emigration from the neural tube. The environment through which neural crest cells move influences both the pattern and direction of their migration. We have shown that the sclerotomal portion of the somites are responsible for the rostrocaudal pattern of trunk neural crest cell movement, whereas the neural tube appears to govern the dorsoventral position of neural crest-derived ganglia. In addition, the notochord inhibits the movement of neural crest cells. In order to understand necessary cell-matrix interactions in neural crest migration, we have performed perturbation experiments, in which antibodies directed against cell surface or extracellular matrix molecules were introduced along neural crest pathways. We find that integrins, fibronectin, laminin, and tenascin all play some role in cranial neural crest emigration. Thus, multiple factors may be involved in controlling neural crest cell migration, and different factors may be important for migration in different regions of the embryo.  相似文献   

13.
Cranial neural crest cell migration is patterned, with neural crest cell-free zones adjacent to rhombomere (R) 3 and R5. These zones have been suggested to result from death of premigratory neural crest cells via upregulation of BMP-4 and Msx-2 in R3 and R5, consequent to R2-, R4-, and R6-derived signals. We reinvestigated this model and found that cell death detected by acridine orange staining in avian embryos varied widely numerically and in pattern, but with a tendency for an elevated zone centered at the R2/3 boundary. In situ hybridization of BMP-4 mRNA resolved to centers at R3 and R5 but Msx-2 resolved to the R2/3 border with only a faint smear from R5 to R6. Outgrowth of neural crest cells was less in isolated R3 cultures than in R1+2, R2, and R4 cultures, but R3 showed neither a decrease in outgrowth of neural crest cells nor an increase in cell death when cocultured with R1+2, R2, or R4. In addition, in serum-free culture, exogenous BMP-4 strikingly reduced neural crest cell outgrowth from R1+2 and R4 as well as R3. Thus we cannot confirm the role of intraneural cell death in patterning rhombomeric neural crest outgrowth. However, grafting quail R2 or R4 adjacent to the chick hindbrain demonstrated a neural crest cell exclusion zone next to R3 and R5. We suggest that one important pattern determinant for rhombomeric neural crest cell migration involves the microenvironment next to the neural tube.  相似文献   

14.
This study was undertaken to determine whether premigratory neural crest cells of the axolotl embryo differentiate autonomously into chromatophores, or whether stimuli from the environment, particularly from the extracellular matrix, are required for this process. Neural crest cells were excised from the dorsal part of the premigratory crest cord and cultured alone, either in a serum-free salt solution or in the presence of fetal calf serum (FCS), and together with explants of the neural tube or dorsal epidermis. A "microcarrier" technique was developed to assay the possible effects of subepidermal extracellular matrix (ECM) on chromatophore differentiation. ECM was adsorbed in vivo onto microcarriers prepared from Nuclepore filters, by inserting such carriers under the dorsolateral epidermis in the embryonic trunk. Neural crest cells were then cultured on the substrate of ECM deposited on the carriers. Melanophores were detected by DOPA incubation, revealing phenol oxidase activity, or by externally visible accumulation of melanin. Prospective xanthophores were visualized before they became overtly differentiated by alkali-induced pteridine fluorescence. Isolated premigratory neural crest cells did not transform autonomously into any of these phenotypes. Conversely, coculture with the neural tube or the dorsal epidermis, and also the initial presence or later addition of FCS during incubation, resulted in differentiation of neural crest cells into chromatophores. Both chromatophore phenotypes were also expressed on the ECM substrate deposited on the microcarriers. The results indicate that neural crest cells do not differentiate autonomously into melanophores and xanthophores, but that interactions with components of, or factors associated with the extra cellular matrix surrounding the premigratory neural crest and present along the dorsolateral migratory pathway are crucial for the expression of these chromatophore phenotypes in the embryo.  相似文献   

15.
Fibronectin promotes rat Schwann cell growth and motility   总被引:12,自引:6,他引:6       下载免费PDF全文
Techniques are now available for culturing well characterized and purified Schwann cells. Therefore, we investigated the role of fibronectin in the adhesion, growth, and migration of cultured rat Schwann cells. Double-immunolabeling shows that, in primary cultures of rat sciatic nerve, Schwann cells (90%) rarely express fibronectin, whereas fibroblasts (10%) exhibit a granular cytoplasmic and fibrillar surface-associated fibronectin. Secondary cultures of purified Schwann cells do not express fibronectin. Exogenous fibronectin has a small effect on promoting the adhesion of Schwann cells to the substrate and does not significantly affect cell morphology, but it produced a surface fibrillar network on fibronectin on the secondary Schwann cells. Tritiated thymidine autoradiography revealed that addition of fibronectin to the medium, even at low concentrations, markedly stimulates Schwann cell proliferation, in both primary and secondary cultures. In addition, when cell migration was measured in a Boyden chamber assay, fibronectin was found to moderately, but clearly, stimulate directed migration or chemotaxis.  相似文献   

16.
In previous studies, we showed that neural crest (NC)-derived cells from embryonic quail dorsal root ganglia (DRG) and peripheral nerve (PN), which do not normally give rise to melanocytes, become committed to melanogenesis following treatment in culture with the phorbol ester drug 12-O-tetradecanoyl phorbol-13-acetate (TPA). These and other observations support the notion that melanocytes and Schwann cells are derived from a common bipotent intermediate in the neural crest lineage--the melanocyte/Schwann cell progenitor. In this study, we test the possibility that peptide growth factors found in the embryonic environment might act similarly to TPA to influence the fates of these cells. DRG and PN explants were cultured in medium supplemented with a variety of growth factors, and then the cultures were examined for the presence of pigment cells. We found that basic fibroblast growth factor (bFGF), but not various other growth factors, induced pigmentation in about 20% of these cultures. When low concentrations of TPA were included in the culture medium, bFGF augmented the TPA-induced pigmentation, significantly increasing the proportion of pigmented cultures. These effects of bFGF were age-dependent, and could be blocked by addition of a bFGF-neutralizing antibody to the culture medium. In contrast to these stimulatory effects of bFGF, transforming growth factor-beta 1 (TGF-beta 1) was found to inhibit the TPA- or bFGF-induced pigmentation of DRG cultures. These data suggest, therefore, that at least some NC-derived cells are responsive to bFGF and TGF-beta 1, and that these growth factors may play an important role in the control of NC cell fate.  相似文献   

17.
Investigation of the early phases of the development of primary sensory neurons has been limited to cells obtained from sensory ganglia. Due to the lack of an early, lineage-specific marker for sensory neuroblasts, it has not been possible to use the neural crest, which gives rise to all spinal and some cranial primary sensory neurons, as a source of precursor cells. In the present study, we show that in neural crest derivatives of the quail embryo, the stage-specific embryonic antigen-1 (SSEA-1) is expressed specifically by developing sensory neuroblasts. The monoclonal antibodies anti-SSEA-1 and AC4 were used to characterize sensory neuron development in vivo and in neural crest cell cultures. In the rat and mouse, both antibodies recognize the same carbohydrate sequence [galactose beta 1-4(fucose alpha 1-3)N-acetylglucosamine] which characterizes SSEA-1. In the quail embryo, this epitope is a marker with several attractive characteristics. Among neural crest derivatives, it is specific for the sensory lineage and is expressed by all detectable sensory neuroblasts at all spinal axial levels. In addition, the carbohydrate sequence appears early and persists throughout development. Expression of SSEA-1 was also studied in neural crest cell cultures, in which two populations of sensory neuroblasts were observed. One population differentiated before or shortly after explanation into culture; these cells did not emigrate from the neural tube. A second population appeared in older cultures. Forming the leading edge of the emigrating neural crest cells, they became SSEA-1+ 3 days after the nonmigrating SSEA-1+ cells. Double staining experiments revealed no obvious differences between the two populations with regard to morphology, neurofilament expression, and neurotransmitter content.  相似文献   

18.
19.
Wnt/β-catenin signaling controls multiple steps of neural crest development, ranging from neural crest induction, lineage decisions, to differentiation. In mice, conditional β-catenin inactivation in premigratory neural crest cells abolishes both sensory neuron and melanocyte formation. Intriguingly, the generation of melanocytes is also prevented by activation of β-catenin in the premigratory neural crest, which promotes sensory neurogenesis at the expense of other neural crest derivatives. This raises the question of how Wnt/β-catenin signaling regulates the formation of distinct lineages from the neural crest. Using various Cre lines to conditionally activate β-catenin in neural crest cells at different developmental stages, we show that neural crest cell fate decisions in vivo are subject to temporal control by Wnt/β-catenin. Unlike in premigratory neural crest, β-catenin activation in migratory neural crest cells promotes the formation of ectopic melanoblasts, while the production of most other lineages is suppressed. Ectopic melanoblasts emerge at sites of neural crest target structures and in many tissues usually devoid of neural crest-derived cells. β-catenin activation at later stages in glial progenitors or in melanoblasts does not lead to surplus melanoblasts, indicating a narrow time window of Wnt/β-catenin responsiveness during neural crest cell migration. Thus, neural crest cells appear to be multipotent in vivo both before and after emigration from the neural tube but adapt their response to extracellular signals in a temporally controlled manner.  相似文献   

20.
Immunohistochemical methods are used to investigate in detail the development and regulation of three proteins (217c(Ran-1), A5E3 and GFAP) specifically associated with adult non-myelin-forming Schwann cells in the rat sciatic nerve, from embryo day 15 to maturity. 217c(Ran-1), which is probably the NGF-receptor, and A5E3 are expressed by the majority of cells in the nerve at embryo day 15 and by essentially all cells at embryo day 18. GFAP first appears at embryo day 18; this is an intrinsically programmed developmental event which occurs in cultured Schwann cells even in the absence of serum. Postnatally, the expression of 217c(Ran-1), A5E3 and GFAP is suppressed in cells that form myelin but retained in non-myelin-forming Schwann cells. Mature myelin-forming cells nevertheless maintain the potential to express all three proteins but will only do so if removed from contact with myelinated axons. In neuron-free cultures Schwann cells express all three proteins. This work, together with our previous observations on N-CAM, shows that removal of a diverse set of surface proteins and a change in intermediate filament expression is one of the major consequences of axon to Schwann cell signalling during myelination in the rat sciatic nerve. Unlike myelin-forming cells, adult non-myelin-forming Schwann cells remain very similar to embryonic and newborn cells with respect to expression of surface proteins, in contrast to the previously established developmental changes that occur in their surface lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号