首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino-terminal sequences and amino acid compositions of the three major and two minor polypeptides constituting the filaments of Spirochaeta aurantia periplasmic flagella were determined. The amino-terminal sequence of the major 37.5-kDa outer layer polypeptide is identical to the sequence downstream of the proposed signal peptide of the protein encoded by the S. aurantia flaA gene. However, the amino acid composition of the 37.5-kDa polypeptide is not in agreement with that inferred from the sequence of flaA. The 34- and 31.5-kDa major filament core polypeptides and the 33- and 32-kDa minor core polypeptides show a striking similarity to each other, and the amino-terminal sequences of these core polypeptides show extensive identity with homologous proteins from members of other genera of spirochetes. An additional 36-kDa minor polypeptide that occurs occasionally in preparations of S. aurantia periplasmic flagella appears to be mixed with the 37.5-kDa outer layer polypeptide or a degradation product of this polypeptide.  相似文献   

2.
A major component of the Escherichia coli response to elevated medium osmolarity is the synthesis of a periplasmic protein with an Mr of 31,000. The protein was absent in mutants with lambda placMu insertions in the proU region, a locus involved in transport of the osmoprotectant glycine betaine. This periplasmic protein has now been purified to homogeneity. Antibody directed against the purified periplasmic protein crossreacts with the fusion protein produced as a result of the lambda placMu insertion, indicating that proU is the structural gene specifying the 31-kDa protein. The purified protein binds glycine betaine with high affinity but has no affinity for either proline or choline, clarifying the role of proU in osmoprotectant transport. The amino-terminal sequence of the mature glycine betaine binding protein is Ala-Asp-Leu-Pro-Gly-Lys-Gly-Ile-Thr-Val-Asn-Pro.  相似文献   

3.
To understand a physiological role of an abundant 34-kDa periplasmic protein in the denitrifying phototroph Rhodobacter sphaeroides f. sp. denitrificans grown in a medium containing malate as the carbon source, the gene for the protein was isolated. The deduced amino acid sequence of the protein had a sequence similarity of 66.2% to that of PstS from Sinorhizobium meliloti. The downstream sequence of the Rhodobacter pstS contained five genes similar to pstCAB and phoUB, and its upstream sequence contained a putative regulatory sequence that is analogous to the Pho box involved in phosphate-limitation-induced gene expression in Escherichia coli. Both the amount of the PstS and the pstS promoter-driven expression of lacZ activity increased about two-fold in response to phosphate limitation. This is the first isolation of pst genes encoding proteins of an ABC phosphate transporter system from phototrophic bacteria.  相似文献   

4.
Holospora obtusa is a macronucleus-specific endosymbiotic bacterium of the ciliate Paramecium caudatum. We report the secretion of a 63-kDa periplasmic protein of an infectious form of the bacterium into the macronucleus of its host. Indirect immunofluorescence microscopy with five monoclonal antibodies against the 63-kDa protein demonstrated that, soon after the bacterial invasion into the host macronucleus, the protein was detected in the infected macronucleus and that levels of the protein increased dramatically within one day of infection. The use of inhibitors for host and bacterial protein synthesis illustrated that, in early infection of H. obtusa, not only the pre-existing but also a newly synthesized 63-kDa protein was secreted into the host macronucleus. A partial amino acid sequence of the protein was determined, and a gene encoding the 63-kDa protein was cloned. The deduced amino acid sequence shows that this protein is a novel protein.  相似文献   

5.
6.
The esterase gene from Streptomyces scabies FL1 was cloned and expressed in Streptomyces lividans on plasmids pIJ486 and pIJ702. In S. lividans, the esterase gene was expressed during later stages of growth and was regulated by zinc, as is seen with S. scabies. The 36-kDa secreted form of the esterase was purified from S. lividans. N-terminal amino acid sequencing indicated that the processing site utilized in S. lividans for the removal of the signal sequence was the same as that recognized for processing in S. scabies. Western blots (immunoblots) revealed the presence of a 40-kDa precursor form of the esterase in cytoplasmic extracts. A 23-amino-acid deletion was introduced into the putative signal sequence for the esterase. When this deleted form of the esterase was expressed in S. lividans, a cytoplasmic 38-kDa precursor protein was produced but no secreted esterase was detected, suggesting the importance of the deleted sequence for efficient processing and secretion. The esterase gene was also cloned into the pUC119 plasmid in Escherichia coli. By using the lac promoter sequence, the esterase gene was expressed, and the majority of the esterase was localized to the periplasmic space.  相似文献   

7.
The nucleotide sequence has been determined for two genes involved in methanol oxidation in the facultative methylotroph, Methylobacterium extorquens AM1. The two genes are moxF, encoding the 66-kDa subunit of the methanol dehydrogenase and moxJ, located immediately downstream from moxF, which encodes a 30-kDa protein with unknown function. This information completes the sequence of the 5.86-kb XhoI-SalI fragment containing the moxFJGI region in M. extorquens AM1, and the structure of this gene cluster is presented. Evidence is presented that moxJ is also present in Paracoccus denitrificans. The aa sequence of MoxJ has provided little information concerning its function, but it does appear to contain a signal sequence suggesting a periplasmic location.  相似文献   

8.
The structure of a Salmonella enterica serovar typhi gene located within the fim gene cluster and encoding a putative periplasmic chaperone-like protein involved in the assembly of type 1 pili was determined. This gene, named fimC, has the ability to encode a 26-kDa polypeptide which is similar, at the sequence level, to the PapD periplasmic chaperonin mediating the assembly of P pili of Escherichia coli, as well as to other periplasmic chaperone-like proteins involved in the biogenesis of pili or capsule-like structures of various Gram-negative bacteria. A comprehensive search through the literature and sequence databases identified 31 (putative) bacterial proteins that can be included in this protein family on the basis of sequence similarity. Results of a multiple sequence comparison analysis showed that several residues, including most of those known to be critical in maintaining the three-dimensional structure of PapD, are either conserved or conservatively substituted in all these proteins, suggesting an overall similar folding for all of them. It was also evident that members of this family are clustered into different subfamilies according to structural and phyletic data. Received: 15 February 1996 / Accepted: 3 October 1996  相似文献   

9.
10.
The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.  相似文献   

11.
A bifunctional molecule was genetically engineered which contained the secretory signal and four Fc-binding domains of Staphylococcus aureus protein A (FcA), fused to a single-chain Fv (scFv) derived from an immunoglobulin (Ig) G1 mouse monoclonal antibody (AS32) directed against the plant regulatory photoreceptor protein, phytochrome. The FcA::AS32scFv sequence was encoded in a single synthetic gene and expressed as a 60-kDa periplasmic protein in Escherichia coli. The bifunctionality of the fusion protein was established by its ability to bind to both IgG-agarose and phytochrome-sepharose. Growth of cultures, producing the FcA::AS32scFv, at 37 degrees C, resulted in a decrease in the periplasmic accumulation of the fusion protein, and an increased accumulation of an assumed degradation product which retained Fc-binding activity. Growth of cultures at lower temperatures favoured the accumulation of undegraded fusion protein. The recombinant fusion protein could be purified to homogeneity by a simple, rapid chromatography procedure.  相似文献   

12.
Z Li  F Dumas  D Dubreuil    M Jacques 《Journal of bacteriology》1993,175(24):8000-8007
We have previously reported that a 46-kDa protein present in an outer membrane protein preparation seemed to be a species-specific antigen of Serpulina hyodysenteriae (Z. S. Li, N. S. Jensen, M. Bélanger, M.-C. L'Espérance, and M. Jacques, J. Clin. Microbiol. 30:2941-2947, 1992). The objective of this study was to further characterize this antigen. A Western blot (immunoblot) analysis and immunogold labeling with a monospecific antiserum against this protein confirmed that the protein was present in all S. hyodysenteriae reference strains but not in the nonpathogenic organism Serpulina innocens. The immunogold labeling results also indicated that the protein was associated with the periplasmic flagella of S. hyodysenteriae. N-terminal amino acid sequencing confirmed that the protein was in fact a periplasmic flagellar sheath protein. The molecular mass of this protein, first estimated to be 46 kDa by Western blotting, was determined to be 44 kDa when the protein was evaluated more precisely by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the protein was glycosylated, as determined by glycoprotein staining and also by N-glycosidase F treatment. Five other periplasmic flagellar proteins of S. hyodysenteriae, which may have been the core proteins and had molecular masses of 39, 35, 32, 30, and 29 kDa, were antigenically related and cross-reacted with the periplasmic flagellar proteins of S. innocens. Finally, serum from a pig experimentally infected with S. hyodysenteriae recognized the 44-kDa periplasmic flagellar sheath protein. Our results suggest that the 44-kDa periplasmic flagellar sheath protein of S. hyodysenteriae is a species-specific glycoprotein antigen.  相似文献   

13.
The UL35 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) has been predicted from DNA sequence analysis to encode a small polypeptide with a molecular weight of 12,095. We have investigated the protein product of the UL35 ORF by using a trpE-UL35 gene fusion to produce a corresponding fusion protein in Escherichia coli. The TrpE-UL35 chimeric protein was subsequently isolated and used as a source of immunogen for the production of rabbit polyclonal antiserum directed against the UL35 gene product. The TrpE-UL35 antiserum was found to recognize a 12-kDa protein which was specifically present in HSV-1-infected cells. By utilizing the TrpE-UL35 antiserum, the kinetics of synthesis of the UL35 gene product was examined, and these studies indicate that UL35 is expressed as a gamma 2 (true late) gene. The 12-kDa protein recognized by the TrpE-UL35 antiserum was associated with purified HSV-1 virions and type A and B capsids, suggesting that the UL35 ORF may encode the 12-kDa capsid protein variably designated p12, NC7, or VP26. To confirm this assignment, immunoprecipitation and immunoblotting studies were performed to demonstrate that the TrpE-UL35 antiserum reacts with the same polypeptide as an antiserum directed against the purified p12 capsid protein (anti-NC7) (G.H. Cohen, M. Ponce de Leon, H. Diggelmann, W.C. Lawrence, S.K. Vernon, and R.J. Eisenberg, J. Virol. 34:521-531, 1980). Furthermore, the anti-NC7 serum was also found to react with the TrpE-UL35 chimeric protein isolated from E. coli, providing additional evidence that the UL35 gene encodes p12. On the basis of these studies, we conclude that UL35 represents a true late gene which encodes the 12-kDa capsid protein of HSV-1.  相似文献   

14.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

15.
A chromosomal virulence gene, acvB, of Agrobacterium tumefaciens [J. Bacteriol., 175, 3208–3212 (1993)] was over-expressed in Escherichia coil. A 47-kDa protein was produced and localized in the periplasmic space of E. coli. Amino acid sequence analysis of its N-terminal demonstrated that a signal peptide of 24 amino acids was cleaved from the pre AcvB protein to produce the mature 47-kDa protein. Western-blot analysis using the antiserum against the AcvB protein detected a 47-kDa protein in the periplasmic space only with strain A208 (acvB +). The amount of AcvB protein synthesized was not increased in strain A208 by induction with acetosyringone (100 μm). There was observed no significant difference in induction by acetosyringone of virB:: lacZ, virD:: lacZ, and virE:: lacZ fusion genes regardless of the presence or absence of the acvB gene. The T-strand (lower strand of T-DNA) was detected in strains A208 as well as B119 (acvB?) which were cultured in induction medium containing acetosyringone. AcvB protein bound to single-stranded DNAs with no apparent sequence specificity. The results suggest that AcvB protein binds to the T-strand in periplasm and mediates the transfer of the T-strand from A. tumefaciens to the host plant cell.  相似文献   

16.
17.
The nucleotide sequence of region 1 of the K5 antigen gene cluster of Escherichia coli was determined. This region is postulated to encode functions which, at least in part, participate in translocation of polysaccharide across the periplasmic space and onto the cell surface. Analysis of the nucleotide sequence revealed five genes that encode proteins with predicted molecular masses of 75.7, 60.5, 44, 43, and 27 kDa. The 27-kDa protein was 70.7% homologous to the CMP-2-keto-3-deoxyoctulosonic acid synthetase enzyme encoded by the E. coli kdsB gene, indicating the presence of a structural gene for a similar enzyme within the region 1 operon. The 43-kDa protein was homologous to both the Ctrb and BexC proteins encoded by the Neisseria meningitidis and Haemophilus influenzae capsule gene clusters, respectively, indicating common stages in the expression of capsules in these gram-negative bacteria. However, no homology was detected between the 75.7, 60.5-, and 44-kDa proteins and any of the proteins so far described for the H. influenzae and N. meningitidis capsule gene clusters.  相似文献   

18.
A periplasmic protein has been found to prevent aggregation of the acid-unfolded dimethyl sulfoxide reductase (DMSOR), the periplasmic terminal reductase of dimethyl sulfoxide respiration in the phototroph Rhodobacter sphaeroides f. sp. denitrificans, in a manner similar to that of the Escherichia coli chaperonin GroEL (Matsuzaki et al., Plant Cell Physiol. 37:333–339, 1996). The protein was isolated from the periplasm of the phototroph. It had a molecular mass of 58 kDa and had no subunits. The sequence of 14 amino-terminal residues of the protein was completely identical to that of the periplasmic dipeptide transport protein (DppA) of E. coli. The 58-kDa protein prevented aggregation to a degree comparable to that of GroEL on the basis of monomer protein. The 58-kDa protein also decreased aggregation of guanidine hydrochloride-denatured rhodanese, a mitochondrial matrix protein, during its refolding upon dilution. The 58-kDa protein is a kind of molecular chaperone and could be involved in maintaining unfolded DMSOR, after secretion of the latter into the periplasm, in a competent form for its correct folding.  相似文献   

19.
20.
The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号