共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To identify proteins that interact with Huntingtin-interacting protein-2 (Hip-2), a ubiquitin-conjugating enzyme, a yeast two-hybrid screen system was used to isolate five positive clones. Sequence analyses showed that, with one exception, all Hip-2-interacting proteins contained the RING finger motifs. The interaction of Hip-2 with RNF2, one of the clones, was further confirmed through in vitro and in vivo experiments. Mutations in the RING domain of RNF2 prevented the clone from binding to Hip-2, an indication that the RING domain is the binding determinant. RNF2 showed a ubiquitin ligase (E3) activity in the presence of Hip-2, suggesting that a subset of RING finger proteins may have roles as E3s. 相似文献
3.
Recent results from several laboratories suggest that the interaction of E2 ubiquitin-conjugating enzymes with the RING finger domain has a central role in mediating the transfer of ubiquitin to proteins. Here we present a mutational analysis of the interaction between the E2 enzyme UbcM4/UbcH7 and three different RING finger proteins, termed UIPs, which, like Parkin, contain a RING1-IBR-RING2 motif. The results show that the E2 enzyme binds to the RING1 domain but not to the other cysteine/histidine-rich domains of the RING1-IBR-RING2 motif. Three regions within the UbcM4 molecule are involved in this interaction: the H1 alpha helix, loop L1, connecting the third and fourth strand of the beta sheet, and loop L2, located between the fourth beta strand and the second alpha helix. Loop L2 plays an important role in determining the specificity of interaction. The effects of L2 mutations on UbcM4/UIP interaction are different for each UIP, indicating that RING finger domains can vary considerably in their structural requirements for binding to E2 enzymes. The result that single amino-acid changes can regulate binding of E2 enzymes to different RING finger proteins suggests a novel approach to experimentally manipulate proteolytic pathways mediated by RING finger proteins. 相似文献
4.
In a yeast two-hybrid screen, RING finger protein 1 (RFP-1) and UBR1 were identified as potential binding partners of C. elegans UBC-1, a ubiquitin-conjugating enzyme with a high degree of identity to S. cerevisiae UBC2/RAD6. The interaction of RFP-1 and UBC-1 was confirmed by co-immunoprecipitation experiments. Yeast interaction trap experiments mapped the region of interaction to the basic N-terminal 313 residues of RFP-1. The acidic carboxy-terminal extension of UBC-1 was not required for the interaction with RFP-1. Western blot analysis and indirect immunohistochemical staining show that RFP-1 is present in embryos, larvae, and adults, where it is found in intestinal, nerve ring, pharyngeal, gonadal, and oocyte cell nuclei. Double-stranded RNA interference experiments against rfp-1 indicate that this gene is required for L1 development, vulval development, and for egg laying. By contrast, RNA interference against ubc-1 gave no obvious phenotype, suggesting that ubc-1 is nonessential or is functionally redundant. 相似文献
5.
K U Torii C D Stoop-Myer H Okamoto J E Coleman M Matsui X W Deng 《The Journal of biological chemistry》1999,274(39):27674-27681
The constitutive photomorphogenic 1 (COP1) protein of Arabidopsis functions as a molecular switch for the seedling developmental fates: photomorphogenesis under light conditions and skotomorphogenesis in darkness. The COP1 protein contains a cysteine-rich zinc-binding RING finger motif found in diverse groups of regulatory proteins. To understand the role of the COP1 RING finger in mediating protein-protein interaction, we have performed a yeast two-hybrid screen and isolated a novel protein with a RING-H2 motif, a variant type of the RING finger. This protein, designated COP1 Interacting Protein 8 (CIP8), is encoded by a single copy gene and localized to cytosol in a transient assay. In addition to the RING-H2 motif, the predicted protein has a C4 zinc finger, an acidic region, a glycine-rich cluster, and a serine-rich cluster. The COP1 RING finger and the CIP8 RING-H2 domains are sufficient for their interaction with each other both in vitro and in yeast, whereas neither motif displayed significant self-association. Moreover, site-directed mutagenesis studies demonstrated that the expected zinc-binding ligands of the RING finger and RING-H2 fingers are essential for their interaction. Our findings indicate that the RING finger motif, in this case, serves as autonomous protein-protein interaction domain. The allele specific effect of cop1 mutations on the CIP8 protein accumulation in seedlings indicates that its stability in vivo is dependent on the COP1 protein. 相似文献
6.
7.
Wu PY Hanlon M Eddins M Tsui C Rogers RS Jensen JP Matunis MJ Weissman AM Weisman AM Weissman AM Wolberger C Wolberger CP Pickart CM 《The EMBO journal》2003,22(19):5241-5250
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor. 相似文献
8.
Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins 总被引:8,自引:0,他引:8
Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together. 相似文献
9.
Pringa E Meier I Müller U Martinez-Noel G Harbers K 《Biochimica et biophysica acta》2000,1494(1-2):75-82
The ubiquitin-conjugating enzyme UbcM4, which is identical to the human enzyme UbcH7, was previously shown to be essential for normal mouse development. In order to study the possible role of UbcM4 for cell proliferation and in vitro differentiation, we here describe the establishment and characterization of fibroblast and embryonic stem cell lines with partial or complete inactivation of the UbcM4 gene. ES cell lines in which both alleles of the gene were inactivated by targeted mutagenesis showed no differences in growth rates, cell cycle progression and in vitro differentiation when compared to wild-type ES cells. Fibroblast cell lines with a partially inactivated UbcM4 gene were derived from embryos of the previously described A6 mouse mutant, where retrovirus integration has resulted in a recessive lethal mutation. As in the mutant embryos, steady levels of RNA and protein in the cell lines were reduced by about 70%. The mutant cell lines showed no differences in immortalization kinetics, growth rates and cell cycle progression when compared to wild-type fibroblasts. Taken together, our results strongly suggest that UbcM4-mediated ubiquitination and degradation are not necessary for proteins involved in the maintenance and growth of cells. 相似文献
10.
11.
We have identified a novel protein (BERP) that is a specific partner for the tail domain of myosin V. Class V myosins are a family of molecular motors thought to interact via their unique C-terminal tails with specific proteins for the targeted transport of organelles. BERP is highly expressed in brain and contains an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil (RBCC domain), and a unique C-terminal beta-propeller domain. A yeast two-hybrid screening indicated that the C-terminal beta-propeller domain mediates binding to the tail of the class V myosin myr6 (myosin Vb). This interaction was confirmed by immunoprecipitation, which also demonstrated that BERP could associate with myosin Va, the product of the dilute gene. Like myosin Va, BERP is expressed in a punctate pattern in the cytoplasm as well as in the neurites and growth cones of PC12 cells. We also found that the RBCC domain of BERP is involved in protein dimerization. Stable expression of a mutant form of BERP lacking the myosin-binding domain but containing the dimerization domain resulted in defective PC12 cell spreading and prevented neurite outgrowth in response to nerve growth factor. Our studies present a novel interaction for the beta-propeller domain and provide evidence for a role for BERP in myosin V-mediated cargo transport. 相似文献
12.
A novel human striated muscle RING zinc finger protein, SMRZ, interacts with SMT3b via its RING domain 总被引:4,自引:0,他引:4
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation. 相似文献
13.
Genome-wide analysis of the RING finger gene family in apple 总被引:1,自引:0,他引:1
The RING finger protein family plays a crucial role in plant growth and development and in response to biotic and abiotic
stresses. However, no detailed information concerning this family is available for apple (Malus × domestica L. Borkh) due to the limited information on whole genome sequences. In this study, 688 RING domains in 663 predicted proteins
were identified in apple. Based on the spacing between metal ligands or substitutions at one or more of the metal ligand positions,
nine RING types were identified: RING-H2, RING-HC, RING-C2, RING-v, RING-D, RING-S/T, RING-G, RING-mH2, and RING-mHC, in which
the first seven types were described previously in Arabidopsis, while the latter two were newly identified in apple. Proteins
containing RING finger motifs were further classified into 57 groups according to the different known or unknown domains outside
the RING domains. A total of 643 retrieved proteins appear to be distributed over all 17 linkage groups with different densities.
Microarray and expressed sequence tag data revealed that only a few of these RING finger proteins may be involved in fruit
development. As a first step towards genome-wide analyses of the RING-containing genes in apple, our results provide valuable
information for understanding the classification and putative functions of the RING finger gene family in higher plants. 相似文献
14.
Characterization of proteins structurally related to human N-acetyl-beta-D-glucosaminidase. 下载免费PDF全文
M Carroll 《The Biochemical journal》1978,173(1):191-196
Those proteins of human liver that cross-reacted with antibodies raised to apparently homogenous hexosamindases A and B were detected by immunodiffusion. Cross-reacting proteins with high molecular weights (greater than 2000000) and intermediate molecular weights (70000--200000) were present both in the unadsorbed fraction and in the 0.05--0.2M-NaCl eluate obtained by DEAE-cellulose chromatography at pH7.0. The unadsorbed fraction also contained a cross-reacting protein of low molecular weight (10000--70000). The possible structural and functional relationships between hexosaminidase and the cross-reacting proteins are discussed. An apparently cross-reacting protein present in the 0.05M-NaCl eluate from the DEAE-cellulose column was serologically unrelated to hexosaminidase, but it gave a reaction of immunological identify with one of the apparently cross-reacting proteins having the charge and size characteristics of hexosaminidase A. It is suggested that immunochemical methods may provide criteria for the homogeneity of enzyme preparations superior to those of conventional methods. 相似文献
15.
A new subfamily of structurally related human F-box proteins 总被引:3,自引:0,他引:3
F-box proteins, a critical component of the evolutionary conserved ubiquitin-protein ligase complex SCF (Skp1/Cdc53-Cullin1/F-box), recruit substrates for ubiquitination and consequent degradation through their specific protein-protein interaction domains. Here, we report the identification of full-length cDNAs encoding three novel human F-box proteins named FBG3, FBG4 and FBG5 which display similarity with previously identified NFB42 (FBX2) and FBG2 (FBX6) proteins. All five proteins are characterized by an approximately 180-amino-acid (aa) conserved C-terminal domain and thus constitute a third subfamily of mammalian F-box proteins. Analysis of genomic organization of the five FBG genes revealed that all of them consist of six exons and five introns. FBG1, FBG2 and FBG3 genes are located in tandem on chromosome 1p36, and FBG4 and FBG5 are mapped to chromosome 19q13. FBG genes are expressed in a limited number of human tissues including kidney, liver, brain and muscle tissues. Expression of rat FBG2 gene was found related to differentiation/proliferation status of hepatocytes. Specifically, FBG2 mRNA was expressed in foetal liver, decreased after birth and re-accumulated in adult liver. Expression of FBG2 was strongly inhibited in hepatoma cells by okadaic acid. 相似文献
16.
A gene family encoding RING finger proteins in rice: their expansion, expression diversity, and co-expressed genes 总被引:1,自引:0,他引:1
Sung Don Lim Won Cheol Yim Jun-Cheol Moon Dong Sub Kim Byung-Moo Lee Cheol Seong Jang 《Plant molecular biology》2010,72(4-5):369-380
The proteins harboring RING finger motif(s) have been shown to mediate protein–protein interactions that are relevant to a variety of cellular processes. In an effort to elucidate the evolutionary dynamics of the rice RING finger protein family, we have attempted to determine their genomic locations, expression diversity, and co-expressed genes via in silico analysis and semi-quantitative RT–PCR. A total of 425 retrieved genes appear to be distributed over all 12 of the chromosomes of rice with different distributions, and are reflective of the evolutionary dynamics of the rice genome. A genome-wide dataset harboring 155 gene expression omnibus sample plates evidenced some degree of differential evolutionary fates between members of RING-H2 and RING-HC types. Additionally, responses to abiotic stresses, such as salinity and drought, demonstrated that some degree of expression diversity existed between members of the RING finger protein genes. Interestingly, we determined that one RING-H2 finger protein gene (Os04g51400) manifested striking differences in expression patterns in response to abiotic stresses between leaf and culm-node tissues, further revealing responses highly similar to the majority of randomly selected co-expressed genes. The gene network of genes co-expressed with Os04g51400 may suggest some role in the salt response of the gene. These findings may shed further light on the evolutionary dynamics and molecular functional diversity of these proteins in complex cellular regulations. 相似文献
17.
Zhou X Sun X Cooper KL Wang F Liu KJ Hudson LG 《The Journal of biological chemistry》2011,286(26):22855-22863
Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues. 相似文献
18.
Mace PD Linke K Feltham R Schumacher FR Smith CA Vaux DL Silke J Day CL 《The Journal of biological chemistry》2008,283(46):31633-31640
Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death that are highly expressed in many cancers. Cell death caused by antagonists that bind to IAP proteins is associated with their ubiquitylation and degradation. The RING domain at the C terminus of IAP proteins is pivotal. Here we report the crystal structures of the cIAP2 RING domain homodimer alone, and bound to the ubiquitin-conjugating (E2) enzyme UbcH5b. These structures show that small changes in the RING domain accompany E2 binding. By mutating residues at the E2-binding surface, we show that autoubiquitylation is required for regulation of IAP abundance. Dimer formation is also critical, and mutation of a single C-terminal residue abrogated dimer formation and E3 ligase activity was diminished. We further demonstrate that disruption of E2 binding, or dimerization, stabilizes IAP proteins against IAP antagonists in vivo. 相似文献
19.
FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium 总被引:19,自引:0,他引:19
The flagellar basal body of Salmonella typhimurium consists of four rings surrounding a rod. The rod, which is believed to transmit motor rotation to the filament, is not well characterized in terms of its structure and composition. FlgG is known to lie within the distal portion of the rod, in the region where it is surrounded by the L and P rings, just before the rod-hook junction. The FlgC and FlgF proteins are also known to be flagellar basal-body components; by comparison of deduced and experimental N-terminal amino acid sequences we show here that FlgB is a basal-body protein. The flgB, flgC, flgF and flgG gene sequences and the deduced protein sequences are presented. The four proteins are clearly related to each other in primary sequence, especially toward the N and C termini, supporting the hypothesis (based on examination of basal-body subfractions) that FlgB, FlgC and FlgF are, like FlgG, rod proteins. From this and other information we suggest that the rod is the cell-proximal part of a segmented axial structure of the flagellum, with FlgB, FlgC and FlgF located (in unknown order) in successive segments of the proximal rod, followed by FlgG located in the distal rod; the axial structure then continues with the hook, HAPs and filament. Although the rod is external to the cell membrane, none of the four rod proteins contains a consensus signal sequence for the primary export pathway; comparison with the experimentally determined N-terminal amino acid sequence indicates that FlgB has had its N-terminal methionine removed, while the other three are not processed at all. This demonstrates that these proteins are not exported by the primary cellular pathway, and suggests that they are exported by the same flagellum-specific pathway as the flagellar filament protein flagellin. The observed sequence similarities among the rod proteins, especially a six-residue consensus motif about 30 residues in from the N terminus, may constitute a recognition signal for this pathway or they may reflect higher-order structural similarities within the rod. 相似文献
20.
Pentraxin family of proteins interact specifically with phosphorylcholine and/or phosphorylethanolamine. 总被引:7,自引:0,他引:7
Pentraxins are a family of serum proteins characterized by five identical subunits that are noncovalently linked. The two major types of pentraxins are C-reactive protein (CRP) and serum amyloid P component (SAP). CRP proteins are identified by their calcium-dependent interaction with phosphorylcholine. This study showed that SAP also bound to phosphorylated compounds but had a high specificity for phosphorylethanolamine. Thus, human CRP and SAP show high specificity that is complementary for the related compounds, phosphorylcholine and phosphorylethanolamine, respectively. This relationship suggests a complementary and/or related function for the pentraxins. Pentraxins from other species were also examined. Mouse SAP showed binding interactions and specificity similar to human SAP. Female protein (FP) from hamster and rat CRP showed a hybrid specificity and bound to both phosphorylethanolamine and phosphorylcholine. All of the proteins that bound phosphorylethanolamine also associated with human C4b-binding protein (C4BP). With the exception of human and rat CRP, all the proteins also bound to vesicles containing acidic phospholipids. All of these binding interactions were calcium-dependent and mutually exclusive, suggesting that they involved the same site on the protein. These findings suggest possible ways to examine the function of the pentraxins. 相似文献