首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genomes of positive-strand RNA [+RNA] viruses perform two mutually exclusive functions: they act as mRNAs for the translation of viral proteins and as templates for viral replication. A universal key step in the replication of +RNA viruses is the coordinated transition of the RNA genome from the cellular translation machinery to the viral replication complex. While host factors are involved in this step, their nature is largely unknown. By using the ability of the higher eukaryotic +RNA virus brome mosaic virus (BMV) to replicate in yeast, we previously showed that the host Lsm1p protein is required for efficient recruitment of BMV RNA from translation to replication. Here we show that in addition to Lsm1p, all tested components of the Lsm1p-7p/Pat1p/Dhh1p decapping activator complex, which functions in deadenylation-dependent decapping of cellular mRNAs, are required for BMV RNA recruitment for RNA replication. In contrast, other proteins of the decapping machinery, such as Edc1p and Edc2p from the deadenylation-dependent decapping pathway and Upf1p, Upf2p, and Upf3p from the deadenylation-independent decapping pathway, had no significant effects. The dependence of BMV RNA recruitment on the Lsm1p-7p/Pat1p/Dhh1p complex was linked exclusively to the 3' noncoding region of the BMV RNA. Collectively, our results suggest that the Lsm1p-7p/Pat1p/Dhh1p complex that transfers cellular mRNAs from translation to degradation might act as a key regulator in the switch from BMV RNA translation to replication.  相似文献   

2.
Previously, we used the ability of the higher eukaryotic positive-strand RNA virus brome mosaic virus (BMV) to replicate in yeast to show that the yeast LSM1 gene is required for recruiting BMV RNA from translation to replication. Here we extend this observation to show that Lsm1p and other components of the Lsm1p-Lsm7p/Pat1p deadenylation-dependent mRNA decapping complex were also required for translating BMV RNAs. Inhibition of BMV RNA translation was selective, with no effect on general cellular translation. We show that viral genomic RNAs suitable for RNA replication were already distinguished from nonreplication templates at translation, well before RNA recruitment to replication. Among mRNA turnover pathways, only factors specific for deadenylated mRNA decapping were required for BMV RNA translation. Dependence on these factors was not only a consequence of the nonpolyadenylated nature of BMV RNAs but also involved the combined effects of the viral 5' and 3' noncoding regions and 2a polymerase open reading frame. High-resolution sucrose density gradient analysis showed that, while mutating factors in the Lsm1p-7p/Pat1p complex completely inhibited viral RNA translation, the levels of viral RNA associated with ribosomes were only slightly reduced in mutant yeast. This polysome association was further verified by using a conditional allele of essential translation initiation factor PRT1, which markedly decreased polysome association of viral genomic RNA in the presence or absence of an LSM7 mutation. Together, these results show that a defective Lsm1p-7p/Pat1p complex inhibits BMV RNA translation primarily by stalling or slowing the elongation of ribosomes along the viral open reading frame. Thus, factors in the Lsm1p-7p/Pat1p complex function not only in mRNA decapping but also in translation, and both translation and recruitment of BMV RNAs to viral RNA replication are regulated by a cell pathway that transfers mRNAs from translation to degradation.  相似文献   

3.
Chu CY  Rana TM 《PLoS biology》2006,4(7):e210
RNA interference is triggered by double-stranded RNA that is processed into small interfering RNAs (siRNAs) by Dicer enzyme. Endogenously, RNA interference triggers are created from small noncoding RNAs called microRNAs (miRNAs). RNA-induced silencing complexes (RISC) in human cells can be programmed by exogenously introduced siRNA or endogenously expressed miRNA. siRNA-programmed RISC (siRISC) silences expression by cleaving a perfectly complementary target mRNA, whereas miRNA-induced silencing complexes (miRISC) inhibits translation by binding imperfectly matched sequences in the 3′ UTR of target mRNA. Both RISCs contain Argonaute2 (Ago2), which catalyzes target mRNA cleavage by siRISC and localizes to cytoplasmic mRNA processing bodies (P-bodies). Here, we show that RCK/p54, a DEAD box helicase, interacts with argonaute proteins, Ago1 and Ago2, in affinity-purified active siRISC or miRISC from human cells; directly interacts with Ago1 and Ago2 in vivo, facilitates formation of P-bodies, and is a general repressor of translation. Disrupting P-bodies by depleting Lsm1 did not affect RCK/p54 interactions with argonaute proteins and its function in miRNA-mediated translation repression. Depletion of RCK/p54 disrupted P-bodies and dispersed Ago2 throughout the cytoplasm but did not significantly affect siRNA-mediated RNA functions of RISC. Depleting RCK/p54 released general, miRNA-induced, and let-7-mediated translational repression. Therefore, we propose that translation repression is mediated by miRISC via RCK/p54 and its specificity is dictated by the miRNA sequence binding multiple copies of miRISC to complementary 3′ UTR sites in the target mRNA. These studies also suggest that translation suppression by miRISC does not require P-body structures, and location of miRISC to P-bodies is the consequence of translation repression.  相似文献   

4.
Cytoplasmic processing bodies are sites where nontranslating mRNAs accumulate for different fates, including decapping and degradation, storage, or returning to translation. Previous work has also shown that the Lsm1-7p complex, Dhh1p, and Pat1p, which are all components of P bodies, are required for translation and subsequent recruitment to replication of the plant virus brome mosaic virus (BMV) genomic RNAs when replication is reproduced in yeast cells. To better understand the role of P bodies in BMV replication, we examined the subcellular locations of BMV RNAs in yeast cells. We observed that BMV genomic RNA2 and RNA3 accumulated in P bodies in a manner dependent on cis-acting RNA replication signals, which also directed nonviral RNAs to P bodies. Furthermore, the viral RNA-dependent RNA polymerase coimmunoprecipitates and shows partial colocalization with the P-body component Lsm1p. These observations suggest that the accumulation of BMV RNAs in P bodies may be an important step in RNA replication complex assembly for BMV, and possibly for other positive-strand RNA viruses.  相似文献   

5.
The Lsm1-7-Pat1 complex binds to the 3′ end of cellular mRNAs and promotes 3′ end protection and 5′–3′ decay. Interestingly, this complex also specifically binds to cis-acting regulatory sequences of viral positive-strand RNA genomes promoting their translation and subsequent recruitment from translation to replication. Yet, how the Lsm1-7-Pat1 complex regulates these two processes remains elusive. Here, we show that Lsm1-7-Pat1 complex acts differentially in these processes. By using a collection of well-characterized lsm1 mutant alleles and a system that allows the replication of Brome mosaic virus (BMV) in yeast we show that the Lsm1-7-Pat1 complex integrity is essential for both, translation and recruitment. However, the intrinsic RNA-binding ability of the complex is only required for translation. Consistent with an RNA-binding-independent function of the Lsm1-7-Pat1 complex on BMV RNA recruitment, we show that the BMV 1a protein, the sole viral protein required for recruitment, interacts with this complex in an RNA-independent manner. Together, these results support a model wherein Lsm1-7-Pat1 complex binds consecutively to BMV RNA regulatory sequences and the 1a protein to promote viral RNA translation and later recruitment out of the host translation machinery to the viral replication complexes.  相似文献   

6.
The RNA helicase p54 (DDX6, Dhh1, Me31B, Cgh-1, RCK) is a prototypic component of P-(rocessing) bodies in cells ranging from yeast to human. Previously, we have shown that it is also a component of the large cytoplasmic polyadenylation element-binding protein translation repressor complex in Xenopus oocytes and that when tethered to the 3′ untranslated region, Xp54 represses reporter mRNA translation. Here, we examine the role of the p54 helicase activity in translational repression and in P-body formation. Mutagenesis of conserved p54 helicase motifs activates translation in the tethered function assay, reduces accumulation of p54 in P-bodies in HeLa cells, and inhibits its capacity to assemble P-bodies in p54-depleted cells. Similar results were obtained in four helicase motifs implicated in ATP binding and in coupling ATPase and RNA binding activities. This is accompanied by changes in the interaction of the mutant p54 with the oocyte repressor complex components. Surprisingly, the C-terminal D2 domain alone is sufficient for translational repression and complete accumulation in P-bodies, although it is deficient for P-body assembly. We propose a novel RNA helicase model, in which the D2 domain acts as a protein binding platform and the ATPase/helicase activity allows protein complex remodeling that dictates the balance between repressors and an activator of translation.  相似文献   

7.
In yeast, the activators of mRNA decapping, Pat1, Lsm1 and Dhh1, accumulate in processing bodies (P bodies) together with other proteins of the 5'-3'-deadenylation-dependent mRNA decay pathway. The Pat1 protein is of particular interest because it functions in the opposing processes of mRNA translation and mRNA degradation, thus suggesting an important regulatory role. In contrast to other components of this mRNA decay pathway, the human homolog of the yeast Pat1 protein was unknown. Here we describe the identification of two human PAT1 genes and show that one of them, PATL1, codes for an ORF with similar features as the yeast PAT1. As expected for a protein with a fundamental role in translation control, PATL1 mRNA was ubiquitously expressed in all human tissues as were the mRNAs of LSM1 and RCK, the human homologs of yeast LSM1 and DHH1, respectively. Furthermore, fluorescence-tagged PatL1 protein accumulated in distinct foci that correspond to P bodies, as they co-localized with the P body components Lsm1, Rck/p54 and the decapping enzyme Dcp1. In addition, as for its yeast counterpart, PatL1 expression was required for P body formation. Taken together, these data emphasize the conservation of important P body components from yeast to human cells.  相似文献   

8.
9.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.  相似文献   

10.
LSm1-7 complexes promote cellular mRNA degradation, in addition to translation and replication of positive-strand RNA viruses such as the Brome mosaic virus (BMV). Yet, how LSm1-7 complexes act on their targets remains elusive. Here, we report that reconstituted recombinant LSm1-7 complexes directly bind to two distinct RNA-target sequences in the BMV genome, a tRNA-like structure at the 3′-untranslated region and two internal A-rich single-stranded regions. Importantly, in vivo analysis shows that these sequences regulate the translation and replication of the BMV genome. Furthermore, both RNA-target sequences resemble those found for Hfq, the LSm counterpart in bacteria, suggesting conservation through evolution. Our results provide the first evidence that LSm1-7 complexes interact directly with viral RNA genomes and open new perspectives in the understanding of LSm1-7 functions.  相似文献   

11.
12.
The Brome mosaic virus (BMV) coat protein (CP) accompanies the three BMV genomic RNAs and the subgenomic RNA into and out of cells in an infection cycle. In addition to serving as a protective shell for all of the BMV RNAs, CP plays regulatory roles during the infection process that are mediated through specific binding of RNA elements in the BMV genome. One regulatory RNA element is the B box present in the 5' untranslated region (UTR) of BMV RNA1 and RNA2 that play important roles in the formation of the BMV replication factory, as well as the regulation of translation. A second element is within the tRNA-like 3' UTR of all BMV RNAs that is required for efficient RNA replication. The BMV CP can also encapsidate ligand-coated metal nanoparticles to form virus-like particles (VLPs). This update summarizes the interaction between the BMV CP and RNAs that can regulate RNA synthesis, translation and RNA encapsidation, as well as the formation of VLPs.  相似文献   

13.
Yi G  Gopinath K  Kao CC 《Journal of virology》2007,81(4):1601-1609
Differential expression of viral replication proteins is essential for successful infection. We report here that overexpression of the brome mosaic virus (BMV) 1a protein can repress viral RNA replication in a dosage-dependent manner. Using RNA replication-incompetent reporter constructs, repression of translation from BMV RNA1 and RNA2 was observed, suggesting that the effect on translation of the BMV RNA replication proteins is responsible for the decrease in RNA levels. Furthermore, repression of translation by 1a required the B box in the 5'-untranslated region (5' UTR); BMV RNA3 that lacks a B box in its 5' UTR is not subject to 1a-mediated translational inhibition. Mutations in either the methyltransferase or the helicase-like domains of 1a reduced the repression of replication and translation. These results suggest that in addition to its known functions in BMV RNA synthesis, 1a also regulates viral gene expression.  相似文献   

14.
Bergkessel M  Reese JC 《Genetics》2004,168(1):21-33
The eukaryotic cell cycle displays a degree of plasticity in its regulation; cell cycle progression can be transiently arrested in response to environmental stresses. While the signaling pathways leading to cell cycle arrest are beginning to be well understood, the regulation of the release from arrest has not been well characterized. Here we show that DHH1, encoding a DEAD-box RNA helicase orthologous to the human putative proto-oncogene p54/RCK, is important in release from DNA-damage-induced cell cycle arrest at the G1/S checkpoint. DHH1 mutants are not defective for DNA repair and recover normally from the G2/M and replication checkpoints, suggesting a specific function for Dhh1p in recovery from G1/S checkpoint arrest. Dhh1p has been suggested to play a role in partitioning mRNAs between translatable and nontranslatable pools, and our results implicate this modulation of mRNA metabolism in the recovery from G1/S cell cycle arrest following DNA damage. Furthermore, the high degree of conservation between DHH1 and its human ortholog suggests that this mechanism is conserved among all eukaryotes and potentially important in human disease.  相似文献   

15.
16.
17.
18.
19.
20.
Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3' untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号