首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Integrin α3β1, a receptor for laminins, is involved in the structural and functional organization of epithelial organs, including the lung, kidney, and skin. Recently, a missense mutation that causes substitution of Arg628 with Pro (R628P) in the calf-1 domain of human α3 was shown to be associated with disorders of the lung, kidney, and skin. Here, we found that the R628P mutation leads to aberrations in the posttranslational processing of α3. Specifically, α3 with the R628P mutation showed hardly any cleavage at the calf-2 domain, which usually occurs in the Golgi apparatus during the delivery of de novo-synthesized α3. The mutant α3 retained the ability to associate with integrin β1, but not with the tetraspanin CD151, and the bound β1 was a partially glycosylated immature form, the maturation of which also takes place in the Golgi apparatus. Furthermore, the cell surface expression of the mutant protein was markedly reduced. These results suggest that the R628P mutation leads to a deficit in the transport of α3β1 from the ER to the Golgi apparatus. When Arg628 was mutated to Gln or Glu, instead of Pro, the resulting mutants did not display aberrations in processing or CD151 binding, indicating that the presence of Pro, rather than the absence of Arg, at amino acid residue 628 of α3 is important for the abnormalities in the R628P mutant. In support of this notion, a homology modeling analysis of the calf-1 domain of α3 showed that replacement with Pro, but not with Gln or Glu, caused partial disruption of the β-sheet structures. Furthermore, the ER-associated degradation of the R628P mutant was not enhanced compared with that of the wild-type protein, suggesting that the deficits in the posttranslational processing and cell surface expression of the R628P mutant are independent of the ER-associated degradation, but arise from the defect in its export from the ER. We conclude that the calf-1 domain is required for the transport of α3 from the ER to the Golgi apparatus to maintain the integrity of epithelial tissues, and hence the impairment of the calf-1 domain by the R628P mutation leads to severe diseases of the kidneys, lungs, and skin.  相似文献   

2.
In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.  相似文献   

3.
Miyuki Kawano 《FEBS letters》2010,584(1):207-212
Modification of lipid A is essential for bacterial adaptation to its host. Salmonella Typhimurium LpxR potentially detoxifies lipid A by 3′-O-deacylation; however, the involvement of deacylation in its adaptation remains unclear. LpxR-dependent 3′-O-deacylation was observed in the stationary phase. When macrophages were infected with stationary phase bacteria, the intracellular growth of the lpxR-null strain was lower than that of the wild-type strain. Furthermore, the expression level of inducible nitric oxide synthase was higher in the cells infected with the lpxR-null strain than in the cells infected with the wild-type strain. These results indicate that lipid A 3′-O-deacylation is beneficial for intracellular growth.  相似文献   

4.
Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughout adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.  相似文献   

5.
Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization.  相似文献   

6.
The medaka fish α-amylase was expressed and purified. The expression systems were constructed using methylotrophic yeast Pichia pastoris, and the recombinant proteins were secreted into the culture medium. Purified recombinant α-amylase exhibited starch hydrolysis activity. The optimal pH, denaturation temperature, and KM and Vmax values were determined; chloride ions were essential for enzyme activity. The purified protein was also crystallized and examined by X-ray crystallography. The structure has the (α/β)8 barrel fold, as do other known α-amylases, and the overall structure is very similar to the structure of vertebrate (human and pig) α-amylases. A novel expression plasmid was developed. Using this plasmid, high-throughput construction of an expression system by homologous recombination in P. pastoris cells, previously reported for membrane proteins, was successfully applied to the secretory protein.  相似文献   

7.
Neurotensin (NT) receptors NTS1 and NTS2 are known to display considerable distributional overlap in mammalian central nervous system (CNS). Using co-immunoprecipitation approaches, we demonstrated here that NTS1 forms constitutive heterodimers with NTS2 in transfected COS-7 cells. We also showed that co-expression of NTS2 with NTS1 markedly decreases the cell surface density of NTS1 without affecting ERK1/2 MAPK activity or NT-induced NTS1 internalization. However, radioligand-binding studies indicated that upon prolonged NT stimulation, cell surface NTS1 receptors are more resistant to down-regulation in cells co-expressing NTS1 and NTS2 than in cells expressing NTS1 alone. Taken together, these data suggest that NTS1/NTS2 heterodimerization affects the intracellular distribution and trafficking of NTS1 by making it more similar to that of NTS2 as witnessed in cells expressing NTS2 alone. NTS1/NTS2 heterodimerization might therefore represent an additional mechanism in the regulation of NT-triggered responses mediated by NTS1 and NTS2 receptors.  相似文献   

8.
9.
10.
Galectin-3 has been reported to induce apoptosis of Jurkat cells through binding receptors such as CD45. CD45RABC is heavily O-glycosylated and N-glycosylated, while CD45RO is only N-glycosylated. In this study, no apoptosis induced by galectin-3 was detected in CD45RO-transfected cells, whereas apoptosis of CD45RABC-transfected cells was observed, implying that O-glycans on CD45 might play roles in galectin-3-induced apoptosis. O-Glycosylation inhibition assay further suggests the role of O-glycans on CD45 in regulation of galectin-3-induced apoptosis. We also found that deglycosylation at N327 of CD45RO resulted in increased binding to galectin-3 without affecting apoptosis, while deglycosylation at N36 or N109 of CD45RO enhanced galectin-3-induced apoptosis. These data demonstrate that galectin-3-induced apoptosis of Jurkat cells is regulated by both O-glycans and N-glycans on CD45.  相似文献   

11.
A disintegrin and metalloprotease 10 (ADAM10) is a type I transmembrane glycoprotein with four potential N-glycosylation sites (N267, N278, N439 and N551), that cleaves several plasma membrane proteins. In this work, ADAM10 was found to contain high-mannose and complex-type glycans. Individual N-glycosylation site mutants S269A, T280A, S441A, T553A were constructed, and results indicated that all sites were occupied. T280A was found to accumulate in the endoplasmic reticulum as the non-processed precursor of the enzyme. Furthermore, it exhibited only residual levels of metalloprotease activity in vivo towards the L1 cell adhesion molecule, as well as in vitro, using a ProTNF-alpha peptide as substrate. S441A showed increased ADAM10 susceptibility to proteolysis. Mutation of N267, N439 and N551 did not completely abolish enzyme activity, however, reduced levels were found. ADAM10 is sorted into secretory vesicles, the exosomes. Here, a fraction of ADAM10 from exosomes was found to contain more processed N-linked glycans than the cellular enzyme. In conclusion, N-glycosylation is crucial for ADAM10 processing and resistance to proteolysis, and results suggest that it is required for full-enzyme activity.  相似文献   

12.
Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A2 (iPLA2) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of ∼10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA2, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.  相似文献   

13.
Kamolonol (7-[[(1R,2R,4R,4aS,5R,8aS)-4-hydroxy-1,2,4a,5-tetramethyl-6-oxo-3,4,5,7,8,8a-hexahydro-2H-naphthalen-1-yl]methoxy]chromen-2-one) is a sesquiterpene coumarin and an active component of gum extracts from Ferulaassafoetida. The aim of this study was to investigate the anti-fibrotic and anti-cellular hypertrophic effects of kamolonol, and further to explore its possible mechanism. Kamolonol (3–30 μM) significantly inhibited stress fiber formation induced by angiotensin II (Ang II) in rat heart-derived H9c2 cells. Furthermore, kamolonol (3–30 μM) showed a potent inhibitory effect on Ang II-induced cellular hypertrophy in H9c2 cells. Next, a Rho-associated kinase (ROCK) activity was measured because actin stress fiber formation and/or cellular hypertrophy are usually induced by the activation of ROCK. Rho-associated kinase 2 (ROCK2) studies using a time-resolved fluorescence resonance energy transfer (TR-FRET) showed that kamolonol possesses a potent ROCK2 inhibitory activity with IC50 values of 2.27 μM, and has an ATP-competitive inhibitory mode. In validation study, pretreatment of kamolonol (3–30 μM) for 2 h decreased the Ang II-induced phosphorylation of myosin phosphatase 1 (MYPT1) and myosin light chain 2 (MLC2). Taken together, these results indicate that kamolonol suppresses Ang II-induced stress fiber formation and cellular hypertrophy, and propose that one mechanism underlying these anti-fibrotic and anti-cellular hypertrophic effects involves inhibition of the ROCK-MLC pathway.  相似文献   

14.
Zhou YB  Liu F  Zhu ZD  Zhu H  Zhang X  Wang ZQ  Liu JH  Han ZG 《FEBS letters》2004,576(3):401-407
The present study reported the isolation and characterization of a novel human secreted protein, named as hPAP21 (human protease-associated domain-containing protein, 21 kDa), encoded by the hypothetical gene chromosome 2 open reading frame 7 (C2orf7) that contains signal peptide in its N-terminus, without transmembrane domain, except for PA domain in its middle. Western blotting assay indicated that the c-Myc tagged hPAP21 could be secreted into culture medium in the transfected Chinese hamster ovary cells. However, the molecular weights, whatever intracellular (28 kDa) or extracellular (30 kDa) forms, are larger than that of the prediction. To define whether the glycosylation was important process for its secretion, endoglycosidase H (Endo H) and PNGase F (PNG F) were employed to evaluate the effect of glycosylation types on secretion of hPAP21. Interestingly, the extracellular forms were primarily sensitive to PNG F, not Endo H, implying that complex N-glycosylation could be required for the secretion of hPAP21. Furthermore, N-glycosylation of Asn171 was confirmed as potential crucial process for the secretory protein via site-directed mutagenesis assay. All data will be contributed to the understanding of molecular functions of hPAP21.  相似文献   

15.
Chorea-acanthocytosis (ChAc) is an autosomal, recessive hereditary disease characterized by striatal neurodegeneration and acanthocytosis, and caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene. VPS13A encodes chorein whose physiological function at the molecular level is poorly understood. In this study, we show that chorein interacts with β-adducin and β-actin. We first compare protein expression in human erythrocyte membranes using proteomic analysis. Protein levels of β-adducin isoform 1 and β-actin are markedly decreased in erythrocyte membranes from a ChAc patient. Subsequent co-immunoprecipitation (co-IP) and reverse co-IP assays using extracts from chorein-overexpressing human embryonic kidney 293 (HEK293) cells, shows that β-adducin (isoforms 1 and 2) and β-actin interact with chorein. Immunocytochemical analysis using chorein-overexpressing HEK293 cells demonstrates co-localization of chorein with β-adducin and β-actin. In addition, immunoreactivity of β-adducin isoform 1 is significantly decreased in the striatum of gene-targeted ChAc-model mice. Adducin and actin are membrane cytoskeletal proteins, involved in synaptic function. Expression of β-adducin is restricted to the brain and hematopoietic tissues, corresponding to the main pathological lesions of ChAc, and thereby implicating β-adducin and β-actin in ChAc pathogenesis.  相似文献   

16.
EGF-induced activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, its dimer, and other mimetics. However, details of the interaction, such as kinetic properties, have not yet been clarified. The direct interaction is now defined by the surface plasmon resonance (SPR) technique. To determine the affinity of EGFR for lyso-GM3 or lyso-GM3 mimetic, these glycolipid ligands were covalently immobilized onto a sensor chip, and binding affinities were investigated. Results of these studies confirmed the direct interaction of lyso-GM3 or its mimetic with EGFR. A strong interaction between EGFR and lyso-GM3 or its mimetic was indicated by increased binding of EGFR to glycolipid-immobilized surface, in an EGFR dose-dependent manner.  相似文献   

17.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts.  相似文献   

18.
PON1 is a high density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. In vivo animal and human studies have indicated that estradiol (E2) supplementation enhances serum PON1 activity. In this study, we sought to determine if E2 directly up-regulates cell-associated PON1 activity in vitro and to characterize the mechanism of regulation. In vitro E2 treatment of both the human hepatoma cell line Huh7 and normal rat hepatocytes resulted in a 2- to 3-fold increase in cell-associated PON1 catalytic activity. E2 potently induced PON1 activity with average EC50 values of 15 nM for normal hepatocytes and 68 nM for Huh7. The enhancement of PON1 activity by E2 was blocked by the estrogen receptor (ER) antagonist ICI 182,780 indicating that E2 was acting through the ER. The up-regulation of PON1 activity by E2 did not involve enhancement of PON1 mRNA or protein levels and did not promote secretion of PON1. Thus, E2 can enhance cell-associated PON1 activity in vitro without altering PON1 gene expression or protein level. Our data suggest that E2 may regulate the specific activity and/or stability of cell surface PON1.  相似文献   

19.
20.
Platycodin D (PD), an active triterpenoid saponin from Platycodon grandiflorum, has been known to inhibit the proliferation of a variety of cancer cells, but the effect of PD on the invasiveness of cancer cells is largely unknown. In this study, we first determined the molecular mechanism by which PD inhibits the migratory and invasive abilities of the highly metastatic MDA-MB-231 breast cancer cell line. We demonstrated that a non-cytotoxic concentration of PD markedly suppressed wound healing migration, invasion through the matrigel, and adhesion to an ECM-coated substrate in a dose-dependent manner. Moreover, PD inhibited cell invasion by reducing matrix metalloproteinase (MMP)-9 enzyme activity and mRNA expression. Western blot analysis indicated that PD potently suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) as well as blocked the phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling pathway. Furthermore, PD treatment inhibited the DNA binding activity of NF-κB, which is known to mediate the expression of epidermal growth factor receptor (EGFR), as observed by electrophoretic mobility shift assay. Specific mechanisms of action exerted by PD involved the downregulation of EGFR and the inhibition of EGF-induced activation of the EGFR, MAPK, and PI3K/Akt pathways. The in vivo studies showed that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in BALB/c nude mice. These results suggest that PD might be a potential therapeutic candidate for the treatment of breast cancer metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号