首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four highly oxygenated daphnane diterpenoids, trigonothyrins D-G (1-4), were isolated from the stems of Trigonostemon thyrsoideum, and their structures were elucidated on the basis of extensive spectroscopic studies. Inhibitory activity against HIV-1 was assessed for compounds 1, 3 and 4, wherein, 3 showed activity with an EC50 value of 0.13 μg/mL and a therapeutic index (TI) of 75.1.  相似文献   

2.
We designed a series of 25 3-(azol-1-yl)phenylpropanes which yielded 10 compounds (3, 4, 7, 8, 13, 14, 19, 21, 23, 26) that irreversibly immobilized 100% human sperm at 1% (w/v) concentration in 60 s; 12 compounds (8, 9, 15, 16, 19-21, 23-25, 27, 28) that showed potent microbicidal activity at 12.5-50 μg/mL against Trichomonas vaginalis; and 17 compounds (3-11, 13, 15, 19, 21, 23, 26, 28, 30) that exhibited potent anticandida activity with minimum inhibitory concentration (MIC) of 12.5-50 μg/mL. Almost all the compounds exhibited high level of safety towards normal vaginal flora (Lactobacillus) and human cervical (HeLa) cells in comparison to the marketed spermicide nonoxynol-9 (N-9). All the biological activities were evaluated in vitro. Two compounds (4, 8) with good safety profile exhibited multiple (spermicidal, antitrichomonas and anticandida) activities, warranting further lead optimization for furnishing a prophylactic vaginal contraceptive.  相似文献   

3.
Two new monoterpene glycosides, distyloside A-B (1-2), and a new megastigmane glucoside, iso-dihydrodendranthemoside A (3) were isolated from twigs and leaves of Distylium racemosum, along with five known phenolic compounds (4-8). The structures were established via spectroscopic techniques and chemical transformations, and the absolute stereochemistry of 3 was determined by Mosher’s esterification. A homogeneous fluorescence resonance energy transfer (FRET) quenching assay was used to determine the inhibitory activity of isolates (1-8) on the ribonuclease H enzymes from HIV-1, 2, human, and Escherichia coli. Among them, 6″-O-galloylsalidroside (6) showed potent inhibitory effects with an IC50 value of 3.5 μM on HIV-2, and 1.7 μM on human RNase H, respectively.  相似文献   

4.
A series of new HIV-1 protease inhibitors with the hydroxyethylamine core and different hydroxyprolinamide P2 ligands were designed and synthesized. Variation of substitutions at the P2 significantly affected the enzyme inhibitory potency of the inhibitors. Compounds 2a and 2d showed excellent enzyme inhibitory activity with IC50 values in the nanomolar range. An active site binding model for inhibitors 2a and 2d was suggested based upon the computational-docking results of the ligand with HIV-1 protease. This model offers molecular insights regarding ligand-binding site interactions of the hydroxyprolinamide-derived novel P2-ligand.  相似文献   

5.
6.
Silver(I) halides react with tri(p-tolyl)phosphine (tptp, C21H21P) in MeOH/MeCN solutions in 1:1 or 1:3 molar ratios to give complexes of formulae {[AgCl(tptp)]4} (1) or [AgX(tptp)3] (X = Cl (2), Br (3), I (4)), respectively. The complexes were characterized by elemental analyses, and FT-IR far-IR, FT-Raman, TG and 1H, 13C, 31P NMR spectroscopic techniques. Crystal structures of complexes 2-4 were determined by X-ray diffraction at room temperature (rt). The crystal structure of 1 and 4 was also determined at 100(1) and 140(2) K (lt), respectively. In complex 1 four μ3-Cl ions are bonded with four Ag(I) ions forming a cubane while the coordination sphere of silver(I) ions is completed by one P atom from a terminal tri(p-tolyl)phosphine ligand. In complexes 2-3 one terminal halogen and three P atoms from phosphine ligands form a tetrahedral arrangement around the metal ion. Complexes 1-4 were tested for in vitro cytostatic activity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis and against murine leukemia (L1210) and human T-lymphocyte (Molt4/C8 and CEM) cells. The silver(I) complexes 1-4 show strong activity.  相似文献   

7.
High throughput screening of the Roche compound library identified benzanilides such as 1 and 2 as antagonists of TAAR1. Optimisation of this hit series led to the first selective TAAR1 antagonist (N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide EPPTB (RO5212773, 9f) having IC50 of 28 nM at mouse TAAR1.  相似文献   

8.
A Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1 was localized by structure-guided arginine-scanning mutagenesis in combination with surface plasmon resonance assays. Our observation that substitution of some residues of WIF resulted in an increased affinity for Wnt5a, but decreased affinity for Wnt3a, suggests that these residues may define the specificity spectrum of WIF for Wnts. These results hold promise for a more specific targeting of Wnt family members with WIF variants in various forms of cancer.

Structured summary of protein interactions

WIFbinds to Wnt7a by surface plasmon resonance (View Interaction)WIFbinds to Wnt4 by surface plasmon resonance (View Interaction)WIF and Wnt3aphysically interact by competition binding (View Interaction 1, 2, 3, 4,5, 6)WIFbinds to Wnt9b by surface plasmon resonance (View Interaction)WIFbinds to Wnt5a by surface plasmon resonance (View Interaction)WIFbinds to Wnt11 by surface plasmon resonance (View Interaction)WIFbinds to Wnt3a by surface plasmon resonance (View Interaction)Wnt-5a and WIFphysically interact by competition binding (View Interaction 1,2, 3, 4, 5, 6)  相似文献   

9.
A series of novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of biological interest were prepared by sequential Bigineli’s reaction, reduction followed by reaction of resulting amines with different arylisocynates. All the synthesized (1-23) compounds were screened against the pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Biological activity evaluation study reveled that among all the compounds screened, compounds 12 and 17 found to have promising anti-inflammatory activity (68-62% TNF-α and 92-86% IL-6 inhibitory activity at 10 μM). Interestingly compounds 3, 4, 5, 6, 15, 22 and 23 revealed promising antimicrobial activity at MIC of 10-30 μg/mL against selected pathogenic bacteria and fungi.  相似文献   

10.
Phytochemical investigation of ethanol extracts of the Pterospermumacerifolium flowers led to the isolation and identification of two new flavones, 4′-(2-methoxy-4-(1,2,3-trihydroxypropyl) phenoxy luteolin (1) and 5,7,3′-trihydroxy-6-O-β-d-glucopyranosyl flavone (2), and one new lactone, 3,5-dihydroxyfuran-2(5H)-one (3) along with 14 known compounds (4-17). The structure of compounds 1-17 was established based on MS, 1D and 2D NMR, spectroscopic analysis. Eight of these compounds (1-6, 8 and 9) were assessed for osteogenic activity by using primary cultures of rat osteoblast. The compounds 1, 3 and 4 significantly stimulated osteoblast differentiation and mineralization as evident from a marked increase in expression of alkaline phosphatase and alizarin red-S staining of osteoblasts.  相似文献   

11.
N-Polyfluoroalkyl derivatives of 6-deoxy-6-ethylamino-1,2;3,4-di-O-isopropylidene-α-d-galactopyranose (8-10), 1-deoxy-1-methylamino-d-glucitol (13-15), and 1-amino-1-deoxy-d-glucitol (16-18), all possessing perfluoroalkyl segment, were prepared using nucleophilic epoxide ring opening of 2-[(perfluoroalkyl)methyl]oxiranes 1-3. Co-emulsifying properties and hemolytic activity of the new perfluoroalkylated amphiphiles were tested. Both types of the polyol derivatives 8-10 and 13-18 generally displayed good to excellent co-emulsifying properties on testing on perfluorodecalin/Pluronic F-68 microemulsions. Mono-perfluoroalkylated compounds 8-10 and 13-15 displayed high hemolysis, whereas acyclic bis-perfluoroalkylated compounds 16-18 were non-hemolytic even for short perfluorobutyl segment (16). The properties were generally improving with increasing perfluoroalkyl chain length.  相似文献   

12.

Background

Receptor tyrosine kinases (RTK) act through dimerization. Previously it was thought that only bivalent ligands could be agonistic, whereas monovalent ligands should be antagonistic. This notion changed after the demonstration that monovalent ligands can be agonistic, including our report of a small molecule monovalent ligand “D3” that is a partial agonist of the NGF receptor TrkA. A bivalent “D3-linker-D3” was expected to increase agonism.

Methods

Dimeric analogs were synthesized and tested in binding, biochemical, and biological assays.

Results

One analog, 1-ss, binds TrkA with higher affinity than D3 and induces or stabilizes receptor dimers. However, 1-ss exhibited antagonistic activity, through two mechanisms. One mechanism is that 1-ss blocks NGF binding, unlike D3 which is non-competitive. Inhibition of NGF binding may be due to the linker of 1-ss filling the inter-receptor space that NGF traverses before docking. In a second mechanism, 1-ss acts as a pure antagonist, inhibiting NGF-independent TrkA activity in cells over-expressing receptors. Inhibition is likely due to 1-ss “freezing” the TrkA dimer in the inactive state.

Conclusions

Dimerization of an RTK can result in antagonism, through two independent mechanisms.

General significance

we report a small molecule monovalent agonist being converted to a bivalent antagonist.  相似文献   

13.
Yan XH  Di YT  Fang X  Yang SY  He HP  Li SL  Lu Y  Hao XJ 《Phytochemistry》2011,72(6):508-513
Eight limonoids (1-8) including three A, B and D-seco-16-nor-type ones, 5,6-dehydrodesepoxyharperforin C2 (1), harrpernoid B (2), and its C-9S epimer, harrpernoid C (3), along with six known compounds (9-14), were isolated from fruits of Harrisonia perforata. Extensive spectroscopic analysis was used to elucidate their structures and stereochemistries. Further confirmation of structures of 1 and 2 were obtained by single-crystal X-ray diffraction. Limonoids (1-8) were evaluated for their anti-tobacco mosaic virus activity and in vitro cytotoxicity against A549 and HL60 cell lines; only compound 2 showed weak activity.  相似文献   

14.
The metal-dependent protein phosphatase family (PPM) governs a number of signaling pathways. PPM1L, originally identified as a negative regulator of stress-activated protein kinase signaling, was recently shown to be involved in the regulation of ceramide trafficking at ER-Golgi membrane contact sites. Here, we identified acyl-CoA binding domain containing 3 (ACBD3) as an interacting partner of PPM1L. We showed that this association, which recruits PPM1L to ER-Golgi membrane contact sites, is mediated by a GOLD (Golgi dynamics) domain in ACBD3. These results suggested that ACBD3 plays a pivotal role in ceramide transport regulation at the ER-Golgi interface.

Structured summary of protein interactions

ACBD3 and PPM1Lcolocalize by fluorescence microscopy (View interaction)FYCO1physically interacts with PPM1L by pull down (View interaction)SEC14L2physically interacts with PPM1L by pull down (View interaction)ACBD3physically interacts with PPM1L by pull down (View interaction)SEC14L1physically interacts with PPM1L by pull down (View interaction)PPM1Lphysically interacts with ACBD3 by two hybrid (View interaction)  相似文献   

15.
One new ursane-type triterpenoid glycoside, asiaticoside G (1), five triterpenoids, asiaticoside (2), asiaticoside F (3), asiatic acid (4), quadranoside IV (5), and 2α,3β,6β-trihydroxyolean-12-en-28-oic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (6), and four flavonoids, kaempferol (7), quercetin (8), astragalin (9), and isoquercetin (10) were isolated from the leaves of Centella asiatica. Their chemical structures were elucidated by mass, 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy. The structure of new compound 1 was determined to be 2α,3β,23,30-tetrahydroxyurs-12-en-28-oic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester. The anti-inflammatory activities of the isolated compounds were investigated on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Asiaticoside G (1) potently inhibited the production of nitric oxide and tumor necrosis factor-α with inhibition rates of 77.3% and 69.0%, respectively, at the concentration of 100 μM.  相似文献   

16.
Organogallium(III) dinuclear (1-9) and tetranuclear (10) complexes present potential therapeutic agents for the treatment of various types of cancer. The antiproliferative activity of 1-10 was evaluated with cell lines of head and neck squamous cell carcinomas, e.g. HN (soft palate), Cal27, Cal33 (tongue) and FaDu (hypopharynx) cell lines. The activity of compound 8 is comparable with that of cisplatin on cell line Cal27 (IC50 4.6 μM for both compounds). The mode of cell death induced, caspase activity and cell cycle analysis were evaluated for potential hit compounds 3, 5 and 8 Potential hit compounds 3, 5 and 8 were further evaluated for the mode of cell death, caspase activity and cell cycle analysis. Apoptosis induced by compounds 3, 5 and 8 on Cal27 and FaDu cells was confirmed by DNA laddering , as well as acridine orange (AO) and ethidium bromide (EB) double staining. These compounds (3, 5 and 8) induced caspase-independent apoptosis (within 4 h of action) in cell line Cal27. Extrinsic-mediated apoptosis associated with caspase 8 and 3 activation is the main mode of cytotoxicity induced on FaDu cells by compounds 3, 5 and 8. Cell cycle perturbations caused by these compounds are also observed. Our data suggest that compounds 3, 5 and 8 should be studied further for the treatment of head and neck cancer.  相似文献   

17.
Copper(I) catalyzed [3+2] cycloaddition reactions between 5-ethynylbipyridine and benzyl, p-methylbenzyl, or m-bromobenzyl azides yields the corresponding 1-benzyl-4-(5-bipyridyl)-1H-1,2,3-triazoles 1-3. Reaction between 1-3 and [NEt4]2[Re(CO)3Br3] yields the [1-benzyl-4-(5-bipyridyl)-1H-1,2,3-triazole]Re(CO)3Br complexes 4-6. The Re(CO)3Br complexes of 5- and 6-ethynylbipyridine complexes (7-8) are prepared in a similar fashion. Cycloaddition reactions between 7 and benzyl azide yields mixtures of 4 and unreacted starting material.  相似文献   

18.
S Bae  JH Jung  K Kim  IS An  SY Kim  JH Lee  IC Park  YW Jin  SJ Lee  S An 《FEBS letters》2012,586(19):3057-3063
Murine double minute (MDM2) is an E3 ligase that promotes ubiquitination and degradation of tumor suppressor protein 53 (p53). MDM2-mediated regulation of p53 has been investigated as a classical tumorigenesis pathway. Here, we describe TRIAD1 as a novel modulator of the p53-MDM2 axis that induces p53 activation by inhibiting its regulation by MDM2. Ablation of TRIAD1 attenuates p53 levels activity upon DNA damage, whereas ectopic expression of TRIAD1 promotes p53 stability by inhibiting MDM2-mediated ubiquitination/degradation. Moreover, TRIAD1 binds to the C-terminus of p53 to promote its dissociation from MDM2. These results implicate TRIAD1 as a novel regulatory factor of p53-MDM2.Structured summary of protein interactions:p53 physically interacts with Mdm2 and Triad1 by anti tag coimmunoprecipitation (View Interaction: 1, 2, 3)Mdm2physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Mdm2 by anti tag coimmunoprecipitation (View interaction)Triad1binds to p53 by pull down (View interaction)Mdm2physically interacts with p53 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction)  相似文献   

19.
Oxymatrine (1) is a natural anti-hepatitis B virus (HBV) drug that down-regulates host heat-stress cognate 70 (Hsc70) expression through a mechanism different from that of nucleosides. Taking Hsc70 as a target against HBV, 26 novel N-substituted matrinic acid analogs were designed, synthesized and evaluated for their regulation of Hsc70 mRNA expression with 1 as the lead. The SAR analysis revealed that (i) the carboxyl group at the 11-position was required for activity; (ii) introducing of a substituent on the nitrogen atom at the 12-position of 3, especially substituted benzyl, might significantly improve the activity. Among these analogs, compound 9p possessing N-p-methoxylbenzyl afforded an increased anti-HBV effect in comparison with 1. We consider 9p a promising anti-HBV candidate.  相似文献   

20.

Background

Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target.

Methods

We evaluated seven 1-benzyl-3-ketoindole derivatives (79) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs.

Results

The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy.

Conclusions

A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR.

General significance

The 1-benzyl-3-ketoindole derivatives 79 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号