首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Statins are widely used to treat hypercholesterolemia, but they are associated with muscle-related adverse events, by as yet, inadequately resolved mechanisms. In this study, we report that statins induced autophagy in cultured human rhabdomyosarcoma A204 cells. Potency differed widely among the statins: cerivastatin induced autophagy at 0.1 μM, simvastatin at 10 μM but none was induced by pravastatin. Addition of mevalonate, but not cholesterol, blocked induction of autophagy by cerivastatin, suggesting that this induction is dependent on modulation of isoprenoid metabolic pathways. The statin-induced autophagy was not observed in other types of cells, such as human hepatoma HepG2 or embryonic kidney HEK293 cells. Muscle-specific abortive induction of autophagy by hydrophobic statins is a possible mechanism for statin-induced muscle-related side effects.  相似文献   

2.
Autophagy is an intracellular bulk degradation process induced by nutrient starvation, and contributes to macromolecular turnover and rejuvenation of cellular organelles. We demonstrated that vitamin E was a novel nutritional enhancer of autophagy in freshly isolated rat hepatocytes and rat hepatoma H4-II-E cells. Supplementation of fresh hepatocytes with vitamin E (up to 100 μM) increased proteolysis significantly in the presence or absence of amino acids in a dose-dependent manner. The cytosolic LC3 ratio, a newly established index of autophagic flux, was significantly increased by vitamin E, strongly suggesting that the possible site of action is the LC3 conversion step, an early step in autophagosome formation. A typical antioxidant, α-lipoic acid, exerted autophagy suppression, while H2O2 stimulated autophagy. It is conceivable that autophagy was stimulated by oxidative stress and this stimulation was cancelled by cellular antioxidative effects. However, in our studies, vitamin E could have enhanced autophagy over-stimulation by H2O2, rather than suppress it. From these results, using a new cytosolic LC3 ratio, vitamin E increases autophagy by accelerating LC3 conversion through a new signaling pathway, emerging as a novel enhancer of autophagy.  相似文献   

3.
Caveolin-3 (Cav-3) is a muscle-specific membrane protein crucial for myoblast differentiation, as loss of the protein due to mutations within the gene causes an autosomal dominant form of limb girdle muscular dystrophy 1-c. Here we show that along with p38 activity the PI3-kinase/AKT/mTOR pathway is required for proper Cav-3 up-regulation during muscle differentiation and hypertrophy, as confirmed by the marked increase of Cav-3 expression in hypertrophied C2C12 cells transfected with an activated form of AKT. Accordingly, Cav-3 expression was further increased during hypertrophy of L6C5 myoblasts treated with Arg(8)-vasopressin and in hypertrophic muscles of MLC/mIGF-1 transgenic mice. In contrast, Cav-3 expression was down-regulated in C2C12 myotubes exposed to atrophic stimuli such as starvation or treatment with dexamethasone. This study clearly suggests that Cav-3 expression is causally linked to the maturation of muscle phenotype and it is tightly regulated by hypertrophic and atrophic stimuli.  相似文献   

4.
Thaumatin, an intensely sweet-tasting protein, elicits a sweet-taste sensation at a level as low as 50 nM. Although previous sensory analyses have suggested that Lys67 and Arg82 are important to the sweetness of thaumatin, the exact effects of each residue on sweet receptors are still unknown. In the present study, various mutants of thaumatin altered at Arg82 as well as Lys67 were prepared and their sweetness levels were quantitatively evaluated by cell-based assays using HEK293 cells expressing human sweet receptors. Mutations at Arg82 had a more deteriorative effect on sweetness than mutations at Lys67. Particularly, a charge inversion at Arg82 (R82E) resulted in an abolishment of the response to sweet receptors even at a concentration as high as 1 mM. These results indicate that Arg82 plays a central role in determining the sweetness of thaumatin. A strict spatial charge location at residue 82 appears to be required for interaction with sweet receptors.  相似文献   

5.
We screened for genes specifically expressed in the mesenchymes of developing hair follicles using representational differential analysis; one gene identified was MAEG, which encodes a protein consisting of five EGF-like repeats, a linker segment containing a cell-adhesive Arg-Gly-Asp (RGD) motif, and a MAM domain. Immunohistochemistry showed that MAEG protein was localized at the basement membrane of embryonic skin and developing hair follicles, while MAEG expression diminished at the tip of the hair bud. A recombinant MAEG fragment containing the RGD motif was active in mediating adhesion of keratinocytes to the substratum in an RGD-dependent manner. One of the adhesion receptors recognizing the RGD motif was found to be the alpha8beta1 integrin, the expression of which was detected in the placode close to MAEG-positive mesenchymal cells, but later became restricted to the tip of the developing hair bud. Given its localized expression at the basement membrane in developing hair follicles and the RGD-dependent cell-adhesive activity, MAEG may play a role as a mediator regulating epithelial-mesenchymal interaction through binding to RGD-binding integrins including alpha8beta1 during hair follicle development.  相似文献   

6.
Cells resistant to Clostridium perfringens enterotoxin were selected from cultures of highly sensitive Vero (African green monkey kidney) cells. Studies were done with the sensitive and resistant cells to determine the relationship between binding and biological activity. Binding studies using 125I-enterotoxin revealed the apparent existence of high and low affinity binding sites for the enterotoxin on both cell types. The binding site density on resistant cells was found to be 110 that of sensitive cells. It was found that, even with high doses of enterotoxin, only partial affect upon DNA synthesis, membrane permeability, and plating efficiency was noted in resistant cells. It is concluded that without specific binding there is little or no ability of the enterotoxin to effect biological activity in cells.  相似文献   

7.
Administration of trans-stilbene oxide, and new type of inducer of drug-metabolizing enzymes, to rats was found to increase hepatic microsomal UDP-glucuronyl transferase activity with both p-nitrophenol and chloramphenicol as substrate. In Triton X-100 activated microsomes the increase with p-nitrophenol as substrate was to approx. 250% of the control value, while the corresponding value for chloramphenicol was about 600%. These observations indicate that trans-stilbene oxide causes a mixed type 'induction' of UDP-glucuronyl transferase(s), i.e., changes in activity which resemble both those seen after induction with phenobarbital and after treatment with 3-methylcholanthrene. We have also shown that the activity of UDP-glucose dehydrogenase, the enzyme which produces UDP-glucuronic acid, is increased to about 300% of the control after administration of trans-stilbene oxide. The time course of this increase and of the return to control activity after cessation of treatment, the dose-response of this increase and the structural features of the trans-stilbene oxide molecule which are essential for the increase have all been examined. The other two enzymes involved in the conversion of glucose 6-phosphate to UDP-glucuronic acid, namely, phosphoglucomutase and UDP-glucose pyrophosphorylase, were found to be only slightly affected (a 30-60% increase) by treatment with trans-stilbene oxide. After induction with trans-stilbene oxide the hepatic level of UDP-glucuronic acid was unchanged.  相似文献   

8.
The Na+-K+-ATPase is a known target of cardiac glycosides such as digitoxin and ouabain. We determined that the enzyme also is a target of the structurally-related triterpene glycoside actein, present in the herb black cohosh. Actein’s inhibition of Na+-K+-ATPase activity was less potent than that of digitoxin, but actein potentiated digitoxin’s inhibitory effect on Na+-K+-ATPase activity and MDA-MB-453 breast cancer cell growth. We observed different degrees of signal amplification for the two compounds. Actein’s inhibitory effect on ATPase activity was amplified 2-fold for cell growth inhibition, whereas digitoxin’s signal was amplified 20-fold. Actein induced a biphasic response in proteins downstream of ATPase: low dose and short duration of treatment upregulated NF-κB promoter activity, p-ERK, p-Akt and cyclin D1 protein levels, whereas higher doses and longer exposure inhibited these activities. Actein and digitoxin may be a useful synergistic combination for cancer chemoprevention and/or therapy.  相似文献   

9.
Polyamine depletion inhibits the differentiation of L6 myoblast cells   总被引:1,自引:0,他引:1  
Exposure to alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor of ornithine decarboxylase, inhibited the insulin induced differentiation of L6 myoblast cells. Differentiation was assessed by measuring creatine kinase activity and by determining the percentage of nuclei in myotubes. The levels of putrescine and spermidine increased in stimulated cultures prior to their differentiation and these increases were blocked by alpha-difluoromethylornithine. Provision of exogenous putrescine was able to reverse the inhibitory effect of the drug. The anti-differentiative effect is observed only if alpha-difluoromethylornithine is added within twenty-four hours of insulin stimulation. In the experimental protocol used, alpha-difluoromethylornithine was added as the cultures approached confluence and had no effect on their ultimate DNA content. Therefore, the effect of alpha-difluoromethylornithine on myoblast differentiation is not secondary to an effect on cellular proliferation. These results indicate that polyamines may be involved in the mediation of muscle cell differentiation.  相似文献   

10.
Cadherins are calcium-dependent adhesion molecules important for tissue morphogenesis and integrity. LI-cadherin and E-cadherin are the two prominent cadherins in intestinal epithelial cells. Whereas LI-cadherin belongs to the subfamily of 7D (seven-domain)-cadherins defined by their seven extracellular cadherin repeats and short intracellular domain, E-cadherin is the prototype of classical cadherins with five extracellular domains and a highly conserved cytoplasmic part that interacts with catenins and thereby modulates the organization of the cytoskeleton. Here, we report a specific heterotypic trans-interaction of LI- with E-cadherin, two cadherins of distinct subfamilies. Using atomic force microscopy and laser tweezer experiments, the trans-interaction of LI- and E-cadherin was characterized on the single-molecule level and on the cellular level, respectively. This heterotypic interaction showed similar binding strength (20-52 pN at 200-4000 nm/s) and lifetime (0.8 s) as the respective homotypic interactions of LI- and E-cadherin. VE-cadherin, another classical cadherin, did not bind to LI-cadherin. In enterocytes, LI-cadherin and E-cadherin are located in different membrane regions. LI-cadherin is distributed along the basolateral membrane, whereas the majority of E-cadherin is concentrated in adherens junctions. This difference in membrane distribution was also reflected in Chinese hamster ovary cells stably expressing either LI- or E-cadherin. We found that LI-cadherin is localized almost exclusively in cholesterol-rich fractions, whereas E-cadherin is excluded from these membrane fractions. Given their different membrane localization in enterocytes, the heterotypic trans-interaction of LI- and E-cadherin might play a role during development of the intestinal epithelium when the cells do not yet have elaborate membrane specializations.  相似文献   

11.
In Parkinson’s disease patients, α-synuclein is the major component of the intracellular protein aggregates found in dopaminergic neurons. Previously, short synthetic α-synuclein-derived peptides have been shown to not only prevent α-synuclein fibrillation but also dissolve preformed α-synuclein aggregates in vitro. The hexapeptide PGVTAV was the shortest peptide that retained the ability to block α-synuclein fibrillation. For preventative or therapeutic effectiveness, a treatment must suppress the neurotoxicity of α-synuclein aggregates and remain stable in plasma. The present study shows that specific peptides can protect neuronal cells from α-synuclein aggregation-induced cell death. The β-sheet-breaking hexapeptide PGVTAV remained intact in human plasma for longer than one day, suggesting that it may be a candidate for the development of therapeutics to treat Parkinson’s disease.  相似文献   

12.
Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M1-, M3-, and M5-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70 ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M1- and M5-acetylcholine receptors and the amplitude of these signals was larger at the M1-acetylcholine receptor. Concentration-response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M1-, M3- and M5-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation.  相似文献   

13.
Molecular interactions between near-IR fluorescent probes and specific antibodies may be exploited to generate novel smart probes for diagnostic imaging. Using a new phage display technology, we developed such antibody Fab fragments with subnanomolar binding affinity for tetrasulfocyanine, a near-IR in vivo imaging agent. Unexpectedly, some Fabs induced redshifts of the dye absorption peak of up to 44 nm. This is the largest shift reported for a biological system so far. Crystal structure determination and absorption spectroscopy in the crystal in combination with microcalorimetry and small-angle X-ray scattering in solution revealed that the redshift is triggered by formation of a Fab dimer, with tetrasulfocyanine being buried in a fully closed protein cavity within the dimer interface. The derived principle of shifting the absorption peak of a symmetric dye via packaging within a Fab dimer interface may be transferred to other diagnostic fluorophores, opening the way towards smart imaging probes that change their wavelength upon interaction with an antibody.  相似文献   

14.
15.
Hirao T  Takahashi M 《FEBS letters》2005,579(30):6870-6874
Stratum corneum (SC), the outermost layer of the skin, is continuously exposed to oxidative stress via sunlight, lipid peroxidation, and is subsequently accompanied by oxidative modification. Previous studies have shown that major oxidative target proteins in the SC are keratins. However, it remains unclear to date whether cornified envelopes (CEs), protein envelopes of the corneocytes (cornified cells), would be oxidized. In this study, we first revealed oxidative modification of CEs using labeled hydrazide derivatives to detect carbonyl moieties. Carbonylation of CEs was confirmed by reaction with monoclonal antibodies against aldehyde-bound proteins, including anti-acrolein, anti-crotonaldehyde, anti-4-hydroxy-2-nonenal. The extent of carbonylation is stronger in CEs from the face, a sun-exposed area, than those from the inside of upper arm, an unexposed area. Carbonylation of CEs did not depend on their maturity, as evaluated by loss of involucrin antigenicity during maturation process, suggesting that CEs are carbonylated regardless of their maturation stage.  相似文献   

16.
Fatty acids induced an increase in reactive oxygen species (ROS) and enhanced NF-kappaB activation in L6 myotubes differentiated in culture. Palmitate proved more effective than oleate in eliciting these effects. The induction of uncoupling protein-3 (UCP3) at levels similar to those occurring in vivo, attained through the use of an adenoviral vector, led to a reduction of mitochondrial membrane potential in L6 myotubes. However, the capacity of palmitate to increase ROS was not reduced but, quite the opposite, it was moderately enhanced due to the presence of UCP3. The presence of UCP3 in mitochondria did not modify the expression of genes encoding ROS-related enzymes, either in basal conditions or in the presence of palmitate. However, in the presence of UCP3, UCP2 mRNA expression was down-regulated in response to palmitate. We conclude that UCP3 does not act as a protective agent against palmitate-dependent induction of ROS production in differentiated skeletal muscle cells.  相似文献   

17.
Nitric oxide (NO) is a diffusible messenger that conveys information based on its concentration dynamics, which is dictated by the interplay between its synthesis, inactivation and diffusion. Here, we characterized NO diffusion in the rat brain in vivo. By direct sub-second measurement of NO, we determined the diffusion coefficient of NO in the rat brain cortex. The value of 2.2 × 10−5 cm2/s obtained in vivo was only 14% lower than that obtained in agarose gel (used to evaluate NO free diffusion). These results reinforce the view of NO as a fast diffusing messenger but, noticeably, the data indicates that neither NO diffusion through the brain extracellular space nor homogeneous diffusion in the tissue through brain cells can account for the similarity between NO free diffusion coefficient and that obtained in the brain. Overall, the results support that NO diffusion in brain tissue is heterogeneous, pointing to the existence of a pathway that facilitates NO diffusion, such as cell membranes and other hydrophobic structures.  相似文献   

18.
Palladin was a novel binding partner of ILKAP in eukaryotic cells. Palladin’s C-terminal fragment including only its last three Ig domains (residues 710–1106) and the PP2C domain of ILKAP (residues 108–392) were necessary and sufficient for their interaction. The biological significance of the interaction between palladin and ILKAP was that palladin recruited the cytoplasmic ILKAP to initiate ILKAP-induced apoptosis. Our results suggested that palladin played a specific role in modulating the subcellular localization of the cytoplasmic ILKAP and promoting the ILKAP-induced apoptosis.  相似文献   

19.
Although human MDR1 and MDR3 share 86% similarity in their amino acid sequences and are predicted to share conserved domains for drug recognition, their physiological transport substrates are quite different: MDR1 transports xenobiotics and confers multidrug resistance, while MDR3 exports phosphatidylcholine into bile. Although MDR1 shows high ATPase activity, attempts to demonstrate the ATPase activity of human MDR3 have not succeeded. Therefore, it is possible that the difference in the functions of these proteins is caused by their different ATPase activities. To test this hypothesis, a chimera protein containing the transmembrane domains (TMDs) of MDR1 and the nucleotide binding domains (NBDs) of MDR3 was constructed and analyzed. The chimera protein was expressed on the plasma membrane and conferred resistance against vinblastine and paclitaxel, indicating that MDR3 NBDs can support drug transport. Vanadate-induced ADP trapping of MDR3 NBDs in the chimera protein was stimulated by verapamil as was MDR1 NBDs. The purified chimera protein showed drug-stimulated ATPase activity like MDR1, while its Vmax was more than 10-times lower than MDR1. These results demonstrate that the low ATPase activity of human MDR3 cannot account for the difference in the functions of these proteins, and furthermore, that TMDs determine the features of NBDs. To our knowledge, this is the first study analyzing the features of human MDR3 NBDs.  相似文献   

20.
Cho MK  Lee GH  Park EY  Kim SG 《Tissue & cell》2004,36(5):293-305
Unbalanced accumulation of fibers in extracellular matrix (ECM) results from attachment and activation of hepatic stellate cells (HSCs) during chronic liver diseases, in which the content of hyaluronic acid (HA), a glycosaminoglycan, in ECM changes. No information is available on the effect of HA on adhesion and activation of HSCs although that of collagen (Col) on HSCs was extensively studied. This study investigated the effects of HA with or without Col on adhesion of HSCs or the rate of DNA synthesis. Attachment of primary cultured HSCs was microscopically monitored in the plate simultaneously coated with HA or other ECM components. HA inhibited adhesion of quiescent HSCs at least up to 7 days after seeding, whereas HSCs were adherent to plastic or type I collagen (Col-I), type III collagen (Col-III), type IV collagen (Col-IV) or fibronectin. Both microscopy and alpha-smooth muscle actin immunocytochemistry revealed that the number of HSCs, which had been re-seeded after 15 days of culture, attached to HA-coated area was remarkably lower compared to that of HSCs on Col-I or plastic. Incorporation of HA into Col-I prevented adhesion of activated HSCs to matrix film. The number of HSCs adherent to HA at early times after seeding was minimal and significantly lower than that of the cells adherent to plastic. In contrast, either Col-I or Col-IV increased the number of adherent cells. Attachment of HSCs to plastic was inhibited by soluble HA in culture medium. CD44, the cell surface receptor to which HA binds, was immunochemically detected in HSCs. Adhesion of HSCs to plastic, HA or Col-I was not changed by anti-CD44 antibody. Either HA or Col increased the basal or platelet-derived growth factor-inducible rate of thymidine incorporation into DNA in HSCs. In conclusion, HA inhibits adhesion of quiescent or activated HSCs in spite of its stimulation of DNA synthesis, whereas Col increases HSC attachment and DNA synthesis, and inhibition of HSC adhesion by HA does not involve CD44.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号