首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Genetics and genomics of Candida albicans biofilm formation   总被引:1,自引:0,他引:1  
Biofilm formation by the opportunistic fungal pathogen Candida albicans is a complex process with significant consequences for human health: it contributes to implanted medical device-associated infections. Recent advances in gene expression profiling and genetic analysis have begun to clarify the mechanisms that govern C. albicans biofilm development and acquisition of unique biofilm phenotypes. Such studies have identified candidate adhesin genes, and have revealed that biofilm drug resistance is multifactorial. Newly defined cell-cell communication pathways also have profound effects on biofilm formation. Future challenges include the elucidation of the structure and function of the extracellular exopolymeric substance that surrounds biofilm cells, and the extension of in vitro biofilm observations to newly developed in vivo biofilm models.  相似文献   

3.
Microbially influenced corrosion (MIC) has long been implicated in the deterioration of carbon steel in oil and gas pipeline systems. The authors sought to identify and characterize sessile biofilm communities within a high-temperature oil production pipeline, and to compare the profiles of the biofilm community with those of the previously analyzed planktonic communities. Eubacterial and archaeal 16S rRNA sequences of DNA recovered from extracted pipeline pieces, termed ‘cookies,’ revealed the presence of thermophilic sulfidogenic anaerobes, as well as mesophilic aerobes. Electron microscopy and elemental analysis of cookies confirmed the presence of sessile cells and chemical constituents consistent with corrosive biofilms. Mass spectrometry of cookie acid washes identified putative hydrocarbon metabolites, while surface profiling revealed pitting and general corrosion damage. The results suggest that in an established closed system, the biofilm taxa are representative of the planktonic eubacterial and archaeal community, and that sampling and monitoring of the planktonic bacterial population can offer insight into biocorrosion activity. Additionally, hydrocarbon biodegradation is likely to sustain these communities. The importance of appropriate sample handling and storage procedures to oilfield MIC diagnostics is highlighted.  相似文献   

4.
5.
Acinetobacter baumannii is an aerobic and gram-negative pathogenic bacterium that is resistant to most antibiotics. Recently, A. baumannii 1656-2 exhibited the ability to form biofilms under clinical conditions. In this study, global metabolite profiling of both planktonic and biofilm forms of A. baumannii 1656-2 was performed using high-resolution nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis to investigate the metabolic patterns leading to biofilm formation. Principal components analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots showed a distinct separation between planktonic and biofilm cells. Metabolites including acetates, pyruvate, succinate, UDP-glucose, AMP, glutamate, and lysine were increasingly involved in the energy metabolism of biofilm formation. In particular, the ratio of N-acetyl-D-glucosamine (GlcNAc) to D-glucosamine (GlcNH2) was significantly higher during biofilm formation than under the planktonic condition. This study demonstrates that NMR-based global metabolite profiling of bacterial cells can provide valuable insight into the metabolic changes in multidrug resistant and biofilm-forming bacteria such as A. baumannii 1656-2.  相似文献   

6.
7.
The active bacteria of a biofilm community grown directly on polychlorinated biphenyl (PCB) droplets were analyzed by 16S rRNA fingerprinting, identified by their 16S rRNA gene sequences and fatty acid profiling, and compared with isolates from the biofilm. Although, the multi-species biofilm degraded di- and trichlorinated PCB-congeners these substrates were not attacked by its individual isolated members, which suggests that a metabolic network is responsible for PCB degradation in the biofilm. The community metabolized [U-13C]-2,2'-dichlorobiphenyl incorporating the label into certain phospholipid fatty acids matching those found in Burkholderia species. In contrast, abundant biofilm community members, like Methylobacterium species, did not incorporate the label. These results provide prima faciae evidence for Burkholderia species as the main degraders of PCBs in this type of aerobic soils.  相似文献   

8.
9.
10.
11.
12.
AIMS: This study evaluated the effect of protozoan movement and grazing on the topography of a dual-bacterial biofilm using both conventional light microscopy and a new ultrasonic technique. METHODS AND RESULTS: Coupons of dialysis membrane were incubated in Chalkley's medium for 3 days at 23 degrees C in the presence of bacteria (Pseudomonas aeruginosa and Klebsiella aerogenes) alone, or in co-culture with the flagellate Bodo designis, the ciliate Tetrahymena pyriformis or the amoeba Acanthamoeba castellanii. Amoebic presence resulted in a confluent biofilm similar to the bacteria-only biofilm while the flagellate and ciliate created more diverse biofilm topographies comprising bacterial microcolonies and cavities. CONCLUSIONS: The four distinct biofilm topographies were successfully discerned with ultrasonic imaging and the method yielded information similar to that obtained with conventional light microscopy. SIGNIFICANCE AND IMPACT OF THE STUDY: Ultrasonic imaging provides a potential way forward in the development of a portable, nondestructive technique for profiling the topography of biofilms in situ, which might aid in the future management of biofouling.  相似文献   

13.
We have investigated a potential role for GacA, the response regulator of the GacA/GacS two-component regulatory system, in Pseudomonas aeruginosa biofilm formation. When gacA was disrupted in strain PA14, a 10-fold reduction in biofilm formation capacity resulted relative to wild-type PA14. However, no significant difference was observed in the planktonic growth rate of PA14 gacA(-). Providing gacA in trans on the multicopy vector pUCP-gacA abrogated the biofilm formation defect. Scanning electron microscopy of biofilms formed by PA14 gacA(-) revealed diffuse clusters of cells that failed to aggregate into microcolonies, implying a deficit in biofilm development or surface translocation. Motility assays revealed no decrease in PA14 gacA(-) twitching or swimming abilities, indicating that the defect in biofilm formation is independent of flagellar-mediated attachment and solid surface translocation by pili. Autoinducer and alginate bioassays were performed similarly, and no difference in production levels was observed, indicating that this is not merely an upstream effect on either quorum sensing or alginate production. Antibiotic susceptibility profiling demonstrated that PA14 gacA(-) biofilms have moderately decreased resistance to a range of antibiotics relative to PA14 wild type. This study establishes GacA as a new and independent regulatory element in P. aeruginosa biofilm formation.  相似文献   

14.
15.
16.

Background

Ventilator-associated pneumonia is the most prevalent acquired infection of patients on intensive care units and is associated with considerable morbidity and mortality. Evidence suggests that an improved understanding of the composition of the biofilm communities that form on endotracheal tubes may result in the development of improved preventative strategies for ventilator-associated pneumonia.

Methodology/Principal Findings

The aim of this study was to characterise microbial biofilms on the inner luminal surface of extubated endotracheal tubes from ICU patients using PCR and molecular profiling. Twenty-four endotracheal tubes were obtained from twenty mechanically ventilated patients. Denaturing gradient gel electrophoresis (DGGE) profiling of 16S rRNA gene amplicons was used to assess the diversity of the bacterial population, together with species specific PCR of key marker oral microorganisms and a quantitative assessment of culturable aerobic bacteria. Analysis of culturable aerobic bacteria revealed a range of colonisation from no growth to 2.1×108 colony forming units (cfu)/cm2 of endotracheal tube (mean 1.4×107 cfu/cm2). PCR targeting of specific bacterial species detected the oral bacteria Streptococcus mutans (n = 5) and Porphyromonas gingivalis (n = 5). DGGE profiling of the endotracheal biofilms revealed complex banding patterns containing between 3 and 22 (mean 6) bands per tube, thus demonstrating the marked complexity of the constituent biofilms. Significant inter-patient diversity was evident. The number of DGGE bands detected was not related to total viable microbial counts or the duration of intubation.

Conclusions/Significance

Molecular profiling using DGGE demonstrated considerable biofilm compositional complexity and inter-patient diversity and provides a rapid method for the further study of biofilm composition in longitudinal and interventional studies. The presence of oral microorganisms in endotracheal tube biofilms suggests that these may be important in biofilm development and may provide a therapeutic target for the prevention of ventilator-associated pneumonia.  相似文献   

17.
18.
Bacterial biofilm formation is an important cause of environmental persistence of food-borne pathogens, such as Salmonella Typhimurium. As the ensemble of bacterial cells within a biofilm represents different physiological states, even for monospecies biofilms, gene expression patterns in these multicellular assemblages show a high degree of heterogeneity. This heterogeneity might mask differential gene expression that occurs only in subpopulations of the entire biofilm population when using methods that average expression output. In an attempt to address this problem and to refine expression analysis in biofilm studies, we used the Differential Fluorescence Induction (DFI) technique to gain more insight in S. Typhimurium biofilm gene expression. Using this single cell approach, we were able to identify 26 genetic loci showing biofilm specific increased expression. For a selected number of identified genes, we confirmed the DFI results by the construction of defined promoter fusions, measurement of relative gene expression levels and construction of mutants. Overall, we have shown for the first time that the DFI technique can be used in biofilm research. The fact that this analysis revealed genes that have not been linked with Salmonella biofilm formation in previous studies using different approaches illustrates that no single technique, in casu biofilm formation, is able to identify all genes related to a given phenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号