首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic tobacco plants expressing the putrescine synthesis gene ornithine decarboxylase from mouse were raised to study the effects of up-regulation of a metabolic pathway as critical as the polyamine biosynthesis on the plant growth and development, in vitro-morphogenesis and their response to salt stress. Further, the response of the alternate pathway (arginine decarboxylase) for putrescine synthesis to the modulation of the ornithine decarboxylase pathway has also been investigated. The over-expression of the odc gene and increased levels of putrescine in tobacco led to a delay in plant regeneration on selection medium which could be overcome by the exogenous application of polyamine biosynthesis inhibitors and spermidine. Further, the lines generated had a variable in vitro morphogenic potential, which could be correlated to the shifts in their polyamine metabolism. These studies have brought forward the critical role played by polyamines in the normal development of plants and also their role in plant regeneration. Since polyamines are known to accumulate in cells under abiotic stress conditions, the tolerance of the transgenics to salt stress was also investigated and the transgenics with their polyamine metabolism up-graded showed increased tolerance to salt stress.  相似文献   

2.
Polyamines are low‐molecular weight biogenic amines. They are a specific group of cell growth and development regulators. In the past decade biochemical, molecular and genetic studies have contributed much to a better understanding of the biological role of polyamines in the plant cell. Substantial evidence has also been added to our understanding of the role of polyamines in plastid development. In developing chloroplasts, polyamines serve as a nitrogen source for protein and chlorophyll synthesis. In chloroplast structure, thylakoid proteins linked to polyamines belong mainly to antenna proteins of light‐harvesting chlorophyll a/b–protein complexes. The fact that LHCII oligomeric forms are much more intensely labelled by polyamines, in comparison to monomeric forms, suggests that polyamines participate in oligomer stabilisation. In plastid metabolism, polyamines modulate effectiveness of photosynthesis. The role of polyamines in mature chloroplasts is also related to the photo‐adaptation of the photosynthetic apparatus to low and high light intensity and its response to environmental stress. The occurrence of polyamines and enzymes participating in their metabolism at every stage of plastid development indicates that polyamines play a role in plastid differentiation, structure, functioning and senescence.  相似文献   

3.
The biochemical mechanisms by which polyamines influence plant growth and development are not known. One of mechanisms frequently proposed is that polyamines can bind to key cellular enzymes and modulate their activity. Polyamines have been reported to alter the activity of a number of enzymes in vitro. Among these the casein kinase-2 protein kinases are of particular interest, not only because of increasing recognition of the major role of protein phosphorylation in regulating plant cell metabolism, but also because these kinases have been specifically implicated in the phosphorylation of trans-acting factors and thus could regulate gene expression. Casein kinase-2-type protein kinases have been purified and characterized from both plants and animals. Their structural and biochemical properties appear to have been remarkably conserved throughout evolution. Most are stimulated by mM levels of polyamines. Although this concentration is within the range estimated to occur in plant cells, not enough is known about [polyamine] in subcellular compartments and about how rapidly this concentration can be altered by hormonal and environmental signals to predict whether polyamines play a major role in the regulation of casein kinase-2 protein kinase activity in vivo.  相似文献   

4.
5.
Germins and germin-like proteins (GLPs) constitute a ubiquitous family of plant proteins that seem to be involved in many developmental and stress-related processes. Wheat germin has been extensively studied at the biochemical level: it is found in the apoplast and the cytoplasm of germinating embryo cells and it has oxalate oxidase activity (EC 1.2.3.4). Germin synthesis can also be induced in adult wheat leaves by auxins and by a fungal pathogen but it remains to be determined whether the same gene is involved in developmental, hormonal and stress response. In this work, we have studied the expression of one of the wheat germin genes, named gf-2.8, in wheat as well as in transgenic tobacco plants transformed with either this intact gene or constructs with GUS driven by its promoter. This has allowed us to demonstrate that expression of this single gene is both developmentally and pathogen- regulated. In addition, we show that expression of the wheat gf-2.8 germin gene is also stimulated by some abiotic stresses, especially the heavy metal ions Cd2+, Cu2+ and Co2+. Several chemicals involved in stress signal transduction pathways were also tested: only polyamines were shown to stimulate expression of this gene. Because regulation of the wheat gf-2.8 germin gene is complex and because its product results in developmental and stress-related release of hydrogen peroxide in the apoplast, it is likely that it plays an important role in several aspects of plant growth and defence mechanisms.  相似文献   

6.
7.
Polyamines have been implicated in a wide range of biological processes, including growth and development in bacteria and animals, but their function in higher plants is unclear. Here we show that the Arabidopsis: ACAULIS5 (ACL5) gene, whose inactivation causes a defect in the elongation of stem internodes by reducing cell expansion, encodes a protein that shares sequence similarity with the polyamine biosynthetic enzymes spermidine synthase and spermine synthase. Expression of the recombinant ACL5 protein in Escherichia coli showed that ACL5 possesses spermine synthase activity. Restoration of the acl5 mutant phenotype by somatic reversion of a transposon-induced allele suggests a non-cell-autonomous function for the ACL5 gene product. We also found that expression of the ACL5 cDNA under the control of a heat shock gene promoter in acl5 mutant plants restores the phenotype in a heat shock-dependent manner. The results of the experiments showed that polyamines play an essential role in promotion of internode elongation through cell expansion in Arabidopsis: We discuss the relationships to plant growth regulators such as auxin and gibberellins that have related functions.  相似文献   

8.
Polyamines: essential factors for growth and survival   总被引:7,自引:0,他引:7  
Kusano T  Berberich T  Tateda C  Takahashi Y 《Planta》2008,228(3):367-381
Polyamines are low molecular weight, aliphatic polycations found in the cells of all living organisms. Due to their positive charges, polyamines bind to macromolecules such as DNA, RNA, and proteins. They are involved in diverse processes, including regulation of gene expression, translation, cell proliferation, modulation of cell signalling, and membrane stabilization. They also modulate the activities of certain sets of ion channels. Because of these multifaceted functions, the homeostasis of polyamines is crucial and is ensured through regulation of biosynthesis, catabolism, and transport. Through isolation of the genes involved in plant polyamine biosynthesis and loss-of-function experiments on the corresponding genes, their essentiality for growth is reconfirmed. Polyamines are also involved in stress responses and diseases in plants, indicating their importance for plant survival. This review summarizes the recent advances in polyamine research in the field of plant science compared with the knowledge obtained in microorganisms and animal systems.  相似文献   

9.
10.
Polyamines are nitrogenous compounds found in all eukaryotic and prokaryotic cells and absolutely essential for cell viability. In plants, they regulate several growth and developmental processes and the levels of polyamines are also correlated with the plant responses to various biotic and abiotic stresses. In plant cells, polyamines are synthesized in plastids and cytosol. This biosynthetic compartmentation indicates that the specific transporters are essential to transport polyamines between the cellular compartments. In the present study, a phylogenetic analysis was used to identify candidate polyamine transporters in rice. A full-length cDNA rice clone AK068055 was heterologously expressed in the Saccharomyces cerevisiae spermidine uptake mutant, agp2∆. Radiological uptake and competitive inhibition studies with putrescine indicated that rice gene encodes a protein that functioned as a spermidine-preferential transporter. In competition experiments with several amino acids at 25-fold higher levels than spermidine, only methionine, asparagine, and glutamine were effective in reducing uptake of spermidine to 60% of control rates. Based on those observations, this rice gene was named polyamine uptake transporter 1 (OsPUT1). Tissue-specific expression of OsPUT1 by semiquantitative RT-PCR showed that the gene was expressed in all tissues except seeds and roots. Transient expression assays in onion epidermal cells and rice protoplasts failed to localize to a cellular compartment. The characterization of the first plant polyamine transporter sets the stage for a systems approach that can be used to build a model to fully define how the biosynthesis, degradation, and transport of polyamines in plants mediate developmental and biotic responses.  相似文献   

11.
12.
Polyamines are small ubiquitous molecules that have been involved in nearly all developmental processes, including the stress response. Nevertheless, no direct evidence of a role of polyamines in the wound response has been described. We have studied the expression of genes involved in polyamine biosynthesis in response to mechanical injury. An increase in the expression of the arginine decarboxylase 2 (ADC2) gene in response to mechanical wounding and methyl jasmonate (JA) treatment in Arabidopsis was detected by using DNA microarray and RNA gel-blot analysis. No induction was observed for the ADC1 gene or other genes coding for spermidine and spermine synthases, suggesting that ADC2 is the only gene of polyamine biosynthesis involved in the wounding response mediated by JA. A transient increase in the level of free putrescine followed the increase in the mRNA level for ADC2. A decrease in the level of free spermine, coincident with the increase in putrescine after wounding, was also observed. Abscisic acid effected a strong induction on ADC2 expression and had no effect on ADC1 expression. Wound-induction of ADC2 mRNA was not prevented in the JA-insensitive coi1 mutant. The different pattern of expression of ADC2 gene in wild-type and coi1 mutant might be due to the dual regulation of ADC2 by abscisic acid and JA signaling pathways. This is the first direct evidence of a function of polyamines in the wound-response, and it opens a new aspect of polyamines in plant biology.  相似文献   

13.
Recent developments in the metabolism and function of polyamines in plants is presented. Polyamines appear to be involved in a wide range of plant processes, however their exact role is not completely understood. In this review, the metabolic pathways involved in polyamine biosynthesis and degradation are explained, along with the transport and conjugation of these compounds. The studies involved in the understanding of function(s) of polyamines using metabolic inhibitors, as well as genetic and molecular approaches are described. Polyamine metabolism and profound changes in polyamine titres in response to infection by pathogens has been presented. Its role in adaptation of plants to stress is also presented. Molecular understanding of polyamines and their modulation in transgenics is also discussed. Further line of work in the understanding of the role of polyamines has also been focussed.  相似文献   

14.
Abiotic stresses such as drought, cold, and high salinity are among the most adverse factors that affect plant growth and yield in the field. MicroRNAs are small RNA molecules that regulate gene expression in a sequence-specific manner and play an important role in plant stress response. Identifying abiotic stress-associated microRNAs and understanding their function will help develop new strategies for improvement of plant stress tolerance. Here we highlight recent advances in our understanding of abiotic stress-associated miRNAs in various plants, with focus on their discovery, expression analysis, and evolution.  相似文献   

15.
The HER-2 gene is overexpressed in a subset of breast, ovarian, lung, and pancreatic cancers. Antisense oligonucleotides suppress gene expression depending on the stability of the DNA.RNA hybrids formed at the target site. Polyamines, the cellular cations that interact with DNA and RNA, may influence hybrid stability in the cell. Therefore, we studied the ability of natural polyamines (putrescine, spermidine, and spermine) and a series of their structural analogues to stabilize DNA.RNA and RNA.RNA duplexes using melting temperature (T(m)) measurements and circular dichroism (CD) spectroscopy. Phosphodiester (PO) and phosphorothioate (PS) oligonucleotides (ODNs) (15 nucleotides, 5'-CTCCATGGTGCTCAC-3') targeted to the initiation codon region of the HER-2 mRNA, and complementary RNA and DNA ODNs, were used in this study. The relative order of thermal stability was as follows: RNA.RNA > PO-DNA.RNA > PO-DNA.PO-DNA > PS-DNA.RNA > PS-DNA.PO-DNA > PS-DNA.PS-DNA. The ability of polyamines to stabilize the duplexes improved with the cationicity of the polyamine, with hexamines being more effective than pentamines, which in turn were more effective than tetramines and triamines. However, chemical structural effects were clearly evident with isovalent homologues of spermidine and spermine. CD spectra showed B and A conformations, respectively, for the DNA and RNA helices. DNA.RNA hybrids adopted an intermediate structure between the B and A forms. These data help us to understand the role of endogenous polyamines in DNA.RNA hybrid stabilization, and provide information for designing novel polyamines to facilitate the use of antisense ODNs for controlling HER-2 gene expression.  相似文献   

16.
17.
18.
Polyamines are new plant growth regulators that participate in various physiological processes modulating cell division and differentiation, stimulating secondary metabolite production and in stress responsiveness. In the present study, we evaluated the effect of polyamine application on CYCB1-GUS reporter line in Arabidopsis, in order to monitor changes in cell division. We observed that polyamines modulate the expression of CYCB1-GUS, most likely in an amine-specific manner. In particular, spermidine and spermine induced significant increases in CYCB1-GUS expression in shoot apex and root meristems. According of this view, mainly the higher polyamines stimulate the lateral root formation in Arabidopsis. Furthermore, the application of d-arginine and methylglyoxal bis-(guanylhydrazone) polyamine inhibitors drastically reduced Arabidopsis CYCB1-GUS root growth and plant fresh weight, as well as CYCB1-GUS expression. Another key point on this study was to analyze the effect of polyamines on CYCB1-GUS expression under salt stress. Salt stress treatments repressed CYCB1-GUS expression in a concentration dependent manner; this negative effect was ameliorated by polyamine application, in particular by spermidine and spermine, even at 125 mM NaCl, allowing the maintenance of CYCB1-GUS levels under salt stress. This work is one more contribution on the role of polyamines in cell cycle modulation and abiotic stress protection.  相似文献   

19.
Polyamines, ubiquitous organic aliphatic cations, have been implicated in a myriad of physiological and developmental processes in many organisms, but their in vivo functions remain to be determined. We expressed a yeast S-adenosylmethionine decarboxylase gene (ySAMdc; Spe2) fused with a ripening-inducible E8 promoter to specifically increase levels of the polyamines spermidine and spermine in tomato fruit during ripening. Independent transgenic plants and their segregating lines were evaluated after cultivation in the greenhouse and in the field for five successive generations. The enhanced expression of the ySAMdc gene resulted in increased conversion of putrescine into higher polyamines and thus to ripening-specific accumulation of spermidine and spermine. This led to an increase in lycopene, prolonged vine life, and enhanced fruit juice quality. Lycopene levels in cultivated tomatoes are generally low, and increasing them in the fruit enhances its nutrient value. Furthermore, the rates of ethylene production in the transgenic tomato fruit were consistently higher than those in the nontransgenic control fruit. These data show that polyamine and ethylene biosynthesis pathways can act simultaneously in ripening tomato fruit. Taken together, these results provide the first direct evidence for a physiological role of polyamines and demonstrate an approach to improving nutritional quality, juice quality, and vine life of tomato fruit.  相似文献   

20.
While the role of polyamines in DNA synthesis during the S phase of the cell cycle has been repeatedly postulated, recent studies point also to polyamine involvement in the early phase of the G0-S transition. In order to determine polyamine-dependent steps in the cell cycle we have studied the effects of inhibitors of polyamine biosynthesis and exogenous polyamines on the proliferation of T lymphocytes as well as on the expression of some growth-regulated genes. The ability of Con A-stimulated mouse T lymphocytes to enter DNA synthesis was markedly inhibited by methylglyoxal bis(guanylhydrazone) in a dose-dependent manner. This inhibitory effect was stronger in the presence of fetal calf serum containing a high level of activities of polyamine oxidases than in the presence of horse serum. Putrescine and spermine added to T splenocyte culture instead of mitogen-Con A stimulated [3H]thymidine incorporation with kinetics similar to that observed with Con A. The growth-stimulating effects of polyamines were concentration-dependent. Polyamines at optimal growth-stimulating concentrations (10 microM spermine and 80 microM putrescine) induced the expression of genes encoding the cytoskeletal proteins beta-actin, vimentin, and alpha-tubulin to an extent and with kinetics similar to those of Con A. The results presented herein suggest that polyamines are capable of stimulating the transition of G0 cells to the S phase and that this effect may be mediated by their influence on the gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号